forked from sunovivid/Perturbed-Attention-Guidance
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathimage_sample.py
156 lines (135 loc) · 5.13 KB
/
image_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import argparse
import os
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
sag_defaults,
)
import datetime
def get_datetime():
UTC = datetime.timezone(datetime.timedelta(hours=+9))
date = datetime.datetime.now(UTC).strftime('%Y-%m-%d_%H-%M-%S')
return date
def main():
args = create_argparser().parse_args()
save_name = f"{get_datetime()}_{args.note}"
# set gpu device
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
logger.info(f"Using GPU {args.gpu}")
dist_util.setup_dist(args.gpu)
import numpy as np
import torch as th
import torch.distributed as dist
import torch.nn.functional as F
import yaml
def seed_everything(seed):
import random
random.seed(seed)
np.random.seed(seed)
th.manual_seed(seed)
th.cuda.manual_seed(seed)
th.backends.cudnn.deterministic = True
th.backends.cudnn.benchmark = False
seed_everything(0)
logger.configure(dir=f'RESULTS/{save_name}')
with open(os.path.join(logger.get_dir(), 'config.yaml'), 'w') as f:
yaml.dump(args.__dict__, f)
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
sel_attn_depth=args.sel_attn_depth,
sel_attn_block=args.sel_attn_block,
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location="cpu")
)
model.to(dist_util.dev())
if args.use_fp16:
model.convert_to_fp16()
model.eval()
logger.log("sampling...")
all_images = []
all_labels = []
guidance_kwargs = {}
guidance_kwargs["guide_start"] = args.guide_start
guidance_kwargs["guide_scale"] = args.guide_scale
guidance_kwargs["blur_sigma"] = args.blur_sigma
while len(all_images) * args.batch_size < args.num_samples:
model_kwargs = {}
if args.class_cond:
sample_per_class = args.num_samples // NUM_CLASSES
if sample_per_class == 0:
sample_per_class = 1
print('sample_per_class: ', sample_per_class)
print('start: ', i)
print('end: ', i + args.batch_size )
classes = th.arange(start=i, end=i + args.batch_size, device=dist_util.dev()) // sample_per_class
# classes = th.randint(
# low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev()
# )
if args.sample_class >= 0:
logger.log(f"Sampling class {args.sample_class}")
SAMPLE_CLASS = args.sample_class # 263 = Pembroke, Pembroke Welsh corgi
classes = th.ones_like(classes) * SAMPLE_CLASS
print('classes: ', classes)
sample_fn = (
diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
model,
(args.batch_size, 3, args.image_size, args.image_size),
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
guidance_kwargs=guidance_kwargs
)
sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
if args.class_cond:
gathered_labels = [
th.zeros_like(classes) for _ in range(dist.get_world_size())
]
dist.all_gather(gathered_labels, classes)
all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
logger.log(f"created {len(all_images) * args.batch_size} samples")
arr = np.concatenate(all_images, axis=0)
arr = arr[: args.num_samples]
if args.class_cond:
label_arr = np.concatenate(all_labels, axis=0)
label_arr = label_arr[: args.num_samples]
if dist.get_rank() == 0:
shape_str = "x".join([str(x) for x in arr.shape])
out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz")
logger.log(f"saving to {out_path}")
if args.class_cond:
np.savez(out_path, arr, label_arr)
else:
np.savez(out_path, arr)
dist.barrier()
logger.log("sampling complete")
def create_argparser():
defaults = dict(
clip_denoised=True,
num_samples=10000,
batch_size=16,
use_ddim=False,
model_path="",
)
defaults.update(model_and_diffusion_defaults())
defaults.update(sag_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()