forked from jfzhang95/LSTM-water-table-depth-prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_model.py
executable file
·91 lines (73 loc) · 2.94 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!usr/bin/env python
#-*- coding:utf-8 -*-
from models import LSTM_FC_Model, FFNN_Model, Double_LSTM_Model
def LSTM_FC_prediction(X, Y, X_test=None, iters=20000, learning_rate=1e-4, dropout_prob=0.5):
if dropout_prob > 1. or dropout_prob < 0.:
raise Exception('Dropout level must be in interval [0, 1]')
print("learning rate:", learning_rate)
print("dropout:", dropout_prob)
print("iterations:", iters)
num_month = Y.shape[0]
input_shape = X.shape[1]
print('num_month:', num_month)
print('variable size:', input_shape)
model = LSTM_FC_Model(num_input=input_shape, num_hidden=[40], num_output=1)
Loss = []
print('Start training......')
for iter in range(iters + 1):
loss = model.fit(X, Y, learning_rate, dropout_prob)
Loss.append(loss)
if iter % 1000 == 0:
print("iteration: %s, loss: %s" % (iter, loss))
# Saving model
model.save_model_params('checkpoints/LSTM_FC_CKPT')
print('Start predicting......')
Y_test = model.predict(X_test)
print('Done.')
return Y_test
def FFNN_prediction(X, Y, X_test=None, iters=20000, learning_rate=1e-4, dropout_prob=0.5):
if dropout_prob > 1. or dropout_prob < 0.:
raise Exception('Dropout level must be in interval [0, 1]')
print ("learning_rate:", learning_rate)
print ("dropout:", dropout_prob)
print ("iterations:", iters)
num_month = Y.shape[0]
input_shape = X.shape[1]
print('num_month:', num_month)
print('variable size:', input_shape)
model = FFNN_Model(num_input=input_shape, num_hidden=[40], num_output=1)
Loss = []
print('Start training......')
for iter in range(iters + 1):
loss = model.fit(X, Y, learning_rate, dropout_prob)
Loss.append(loss)
if iter % 1000 == 0:
print("iteration: %s, loss: %s" % (iter, loss))
model.save_model_params('checkpoints/FFNN_CKPT')
print('Start predicting......')
Y_test = model.predict(X_test)
print('Done.')
return Y_test
def DoubleLSTM_prediction(X, Y, X_test=None, iters=1000, learning_rate=1e-1, dropout_prob=0.5):
if dropout_prob > 1. or dropout_prob < 0.:
raise Exception('Dropout level must be in interval [0, 1]')
print("learning_rate:", learning_rate)
print("dropout:", dropout_prob)
print("iterations:", iters)
num_month = Y.shape[0]
input_shape = X.shape[1]
print('num_month:', num_month)
print('variable size:', input_shape)
model = Double_LSTM_Model(num_input=input_shape, num_hidden=[40], num_output=1)
Loss = []
print('Start training......')
for iter in range(iters + 1):
loss = model.fit(X, Y, learning_rate, dropout_prob)
Loss.append(loss)
if iter % 1000 == 0:
print("iteration: %s, loss: %s" % (iter, loss))
model.save_model_params('checkpoints/Double_LSTM_CKPT')
print('Start predicting......')
Y_test = model.predict(X_test)
print('Done.')
return Y_test