This repository has been archived by the owner on Oct 23, 2024. It is now read-only.
forked from kubeflow/katib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
xgboost-example.yaml
76 lines (76 loc) · 2.14 KB
/
xgboost-example.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
apiVersion: kubeflow.org/v1beta1
kind: Experiment
metadata:
name: xgb-svhn-fpga
namespace: kubeflow
spec:
algorithm:
algorithmName: random
maxFailedTrialCount: 3
maxTrialCount: 10
objective:
additionalMetricNames:
- time
goal: 0.99
objectiveMetricName: accuracy
type: maximize
parallelTrialCount: 1
parameters:
- feasibleSpace:
min: "0.00"
max: "0.05"
name: alpha
parameterType: double
- feasibleSpace:
min: "0.1"
max: "0.4"
name: eta
parameterType: double
- feasibleSpace:
min: "0.6"
max: "1.0"
name: subsample
parameterType: double
trialTemplate:
primaryContainerName: training-container
trialParameters:
- name: alpha
description: L1 regularization term on weights
reference: alpha
- name: eta
description: Step size shrinkage used in update to prevent overfitting
reference: eta
- name: subsample
description: Subsample ratio of the training instances
reference: subsample
trialSpec:
apiVersion: batch/v1
kind: Job
spec:
template:
metadata:
labels:
inaccel/fpga: enabled
annotations:
inaccel/cli: |
bitstream install --mode others https://store.inaccel.com/artifactory/bitstreams/xilinx/aws-vu9p-f1/dynamic-shell/aws/com/inaccel/xgboost/0.1/2exact
spec:
containers:
- name: training-container
image: "docker.io/inaccel/jupyter:lab"
command:
- python3
- XGBoost/parameter-tuning.py
args:
- "--name=SVHN"
- "--test-size=0.35"
- "--tree-method=fpga_exact"
- "--max-depth=10"
- "--alpha=${trialParameters.alpha}"
- "--eta=${trialParameters.eta}"
- "--subsample=${trialParameters.subsample}"
resources:
limits:
xilinx/aws-vu9p-f1: 1
restartPolicy: Never