-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathairocean.js
209 lines (181 loc) · 4.99 KB
/
airocean.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
* Buckminster Fuller’s AirOcean arrangement of the icosahedron
*
* Implemented for D3.js by Jason Davies (2013),
* Enrico Spinielli (2017) and Philippe Rivière (2017, 2018)
*
*/
import { atan, degrees } from "./math.js";
import polyhedral from "./polyhedral/index.js";
import { default as grayFullerRaw } from "./grayfuller.js";
import {
geoCentroid as centroid,
geoContains as contains,
geoGnomonic as gnomonic,
geoProjection as projection
} from "d3-geo";
import { range } from "d3-array";
function airoceanRaw(faceProjection) {
const theta = atan(0.5) * degrees;
// construction inspired by
// https://en.wikipedia.org/wiki/Regular_icosahedron#Spherical_coordinates
const vertices = [[0, 90], [0, -90]].concat(
range(10).map((i) => [(i * 36 + 180) % 360 - 180, i & 1 ? theta : -theta])
);
// icosahedron
const polyhedron = [
[0, 3, 11],
[0, 5, 3],
[0, 7, 5],
[0, 9, 7],
[0, 11, 9], // North
[2, 11, 3],
[3, 4, 2],
[4, 3, 5],
[5, 6, 4],
[6, 5, 7],
[7, 8, 6],
[8, 7, 9],
[9, 10, 8],
[10, 9, 11],
[11, 2, 10], // Equator
[1, 2, 4],
[1, 4, 6],
[1, 6, 8],
[1, 8, 10],
[1, 10, 2] // South
].map((face) => face.map((i) => vertices[i]));
// add centroid
polyhedron.forEach((face) => (face.centroid = centroid({ type: "MultiPoint", coordinates: face })));
// split the relevant faces:
// * face[15] in the centroid: this will become face[15], face[20] and face[21]
// * face[14] in the middle of the side: this will become face[14] and face[22]
(function() {
let face, tmp, mid, centroid;
// Split face[15] in 3 faces at centroid.
face = polyhedron[15];
centroid = face.centroid;
tmp = face.slice();
face[0] = centroid; // (new) face[15]
face = [tmp[0], centroid, tmp[2]];
face.centroid = centroid;
polyhedron.push(face); // face[20]
face = [tmp[0], tmp[1], centroid];
face.centroid = centroid;
polyhedron.push(face); // face[21]
// Split face 14 at the edge.
face = polyhedron[14];
centroid = face.centroid;
tmp = face.slice();
// compute planar midpoint
const proj = gnomonic()
.scale(1)
.translate([0, 0])
.rotate([-centroid[0], -centroid[1]]);
const a = proj(face[1]),
b = proj(face[2]);
mid = proj.invert([(a[0] + b[0]) / 2, (a[1] + b[1]) / 2]);
face[1] = mid; // (new) face[14]
// build the new half face
face = [tmp[0], tmp[1], mid];
face.centroid = centroid; // use original face[14] centroid
polyhedron.push(face); // face[22]
// cut face 19 to connect to 22
face = polyhedron[19];
centroid = face.centroid;
tmp = face.slice();
face[1] = mid;
// build the new half face
face = [mid, tmp[0], tmp[1]];
face.centroid = centroid;
polyhedron.push(face); // face[23]
})();
const airocean = function(faceProjection) {
faceProjection =
faceProjection ||
// for half-triangles this is definitely not centroid({type: "MultiPoint", coordinates: face});
((face) => gnomonic()
.scale(1)
.translate([0, 0])
.rotate([-face.centroid[0], -face.centroid[1]]));
const faces = polyhedron.map((face, i) => {
const polygon = face.slice();
polygon.push(polygon[0]);
return {
face: face,
site: face.centroid,
id: i,
contains: function(lambda, phi) {
return contains({ type: "Polygon", coordinates: [polygon] }, [
lambda * degrees,
phi * degrees
]);
},
project: faceProjection(face)
};
});
// Connect each face to a parent face.
const parents = [
// N
-1, // 0
0, // 1
1, // 2
11, // 3
13, // 4
// Eq
6, // 5
7, // 6
1, // 7
7, // 8
8, // 9
9, // 10
10, // 11
11, // 12
12, // 13
13, // 14
// S
6, // 15
8, // 16
10, // 17
17, // 18
21, // 19
16, // 20
15, // 21
19, // 22
19 // 23
];
parents.forEach((d, i) => {
const node = faces[d];
node && (node.children || (node.children = [])).push(faces[i]);
});
function face(lambda, phi) {
for (let i = 0; i < faces.length; ++i) {
if (faces[i].contains(lambda, phi)) return faces[i];
}
}
// Polyhedral projection
const proj = polyhedral(
faces[0], // the root face
face // a function that returns a face given coords
);
proj.faces = faces;
return proj;
};
return airocean(faceProjection);
}
export default function () {
const p = airoceanRaw((face) => {
const c = face.centroid;
face.direction =
Math.abs(c[1] - 52.62) < 1 || Math.abs(c[1] + 10.81) < 1 ? 0 : 60;
return projection(grayFullerRaw())
.scale(1)
.translate([0, 0])
.rotate([-c[0], -c[1], face.direction || 0]);
});
return p
.rotate([-83.65929, 25.44458, -87.45184])
.angle(-60)
.scale(45.4631)
.center([126, 0]);
}