-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathintersect.js
61 lines (51 loc) · 2.16 KB
/
intersect.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import {abs, acos, cos, degrees, epsilon, epsilon2, pi, radians} from "./math.js";
import {cartesian, cartesianCross, cartesianDot, cartesianEqual, cartesianNormalize, spherical} from "./cartesian.js";
export class intersectSegment {
constructor(from, to) {
this.from = from, this.to = to;
this.normal = cartesianCross(from, to);
this.fromNormal = cartesianCross(this.normal, from);
this.toNormal = cartesianCross(this.normal, to);
this.l = acos(cartesianDot(from, to));
}
}
// >> here a and b are segments processed by intersectSegment
export function intersect(a, b) {
if (cartesianEqual(a.from, b.from) || cartesianEqual(a.from, b.to)) return a.from;
if (cartesianEqual(a.to, b.from) || cartesianEqual(a.to, b.to)) return a.to;
// Slightly faster lookup when there is no intersection
const lc = (a.l + b.l < pi) ? cos(a.l + b.l) - epsilon : -1;
if (cartesianDot(a.from, b.from) < lc
|| cartesianDot(a.from, b.to) < lc
|| cartesianDot(a.to, b.from) < lc
|| cartesianDot(a.to, b.to) < lc)
return;
const axb = cartesianNormalize(cartesianCross(a.normal, b.normal));
const a0 = cartesianDot(axb, a.fromNormal);
const a1 = cartesianDot(axb, a.toNormal);
const b0 = cartesianDot(axb, b.fromNormal);
const b1 = cartesianDot(axb, b.toNormal);
// check if the candidate lies on both segments
// or is almost equal to one of the four points
if (a0 >= 0 && a1 <= 0 && b0 >= 0 && b1 <= 0)
return axb;
// same test for the antipode
if (a0 <= 0 && a1 >= 0 && b0 <= 0 && b1 >= 0)
return axb.map(d => -d);
}
export function intersectPointOnLine(p, a) {
const a0 = cartesianDot(p, a.fromNormal);
const a1 = cartesianDot(p, a.toNormal);
p = cartesianDot(p, a.normal);
return abs(p) < epsilon2 && (a0 > -epsilon2 && a1 < epsilon2 || a0 < epsilon2 && a1 > -epsilon2);
}
export const intersectCoincident = {};
export default function(a, b) {
const ca = a.map(p => cartesian(p.map(d => d * radians)));
const cb = b.map(p => cartesian(p.map(d => d * radians)));
const i = intersect(
new intersectSegment(ca[0], ca[1]),
new intersectSegment(cb[0], cb[1])
);
return i ? spherical(i).map((d) => d * degrees) : null;
}