-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathrectangularPolyconic.js
44 lines (39 loc) · 1.33 KB
/
rectangularPolyconic.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import {abs, acos, asin, atan, cos, epsilon, pi, sin, tan} from "./math.js";
import parallel1 from "./parallel1.js";
export function rectangularPolyconicRaw(phi0) {
var sinPhi0 = sin(phi0);
function forward(lambda, phi) {
var A = sinPhi0 ? tan(lambda * sinPhi0 / 2) / sinPhi0 : lambda / 2;
if (!phi) return [2 * A, -phi0];
var E = 2 * atan(A * sin(phi)),
cotPhi = 1 / tan(phi);
return [
sin(E) * cotPhi,
phi + (1 - cos(E)) * cotPhi - phi0
];
}
// TODO return null for points outside outline.
forward.invert = function(x, y) {
if (abs(y += phi0) < epsilon) return [sinPhi0 ? 2 * atan(sinPhi0 * x / 2) / sinPhi0 : x, 0];
var k = x * x + y * y,
phi = 0,
i = 10, delta;
do {
var tanPhi = tan(phi),
secPhi = 1 / cos(phi),
j = k - 2 * y * phi + phi * phi;
phi -= delta = (tanPhi * j + 2 * (phi - y)) / (2 + j * secPhi * secPhi + 2 * (phi - y) * tanPhi);
} while (abs(delta) > epsilon && --i > 0);
var E = x * (tanPhi = tan(phi)),
A = tan(abs(y) < abs(phi + 1 / tanPhi) ? asin(E) * 0.5 : acos(E) * 0.5 + pi / 4) / sin(phi);
return [
sinPhi0 ? 2 * atan(sinPhi0 * A) / sinPhi0 : 2 * A,
phi
];
};
return forward;
}
export default function() {
return parallel1(rectangularPolyconicRaw)
.scale(131.215);
}