Skip to content

Latest commit

 

History

History
1824 lines (1331 loc) · 97.2 KB

MIGRATION.md

File metadata and controls

1824 lines (1331 loc) · 97.2 KB

Version migration

When new releases include breaking changes or deprecations, this document describes how to migrate.

Migrating to 1.9.0

Database migration

  • This release includes database schema and data migrations to improve the performance of the Runs page. We highly recommend running these migrations to avoid slow page loads of the new Runs page. The migration will add a new column to the runs table, a new column to the bulk_actions table and a new backfill_tags table. A data migration will populate the new columns and table. Run dagster instance migrate to run the schema and data migration.

Notable behavior changes

  • Backfills have been moved from their own tab underneath the Overview page to entries within the table on the Runs page. This reflects the fact that backfills and runs are similar entities that share most properties. You can continue to use the legacy Runs page with the “Revert to legacy Runs page” user setting. (GitHub Discussion)
  • By default, AutomationConditionSensorDefinitions will now emit backfills to handle cases where more than one partition of an asset is requested on a given tick. This allows that asset's BackfillPolicy to be respected. This feature can be disabled by setting allow_backfills to False on the sensor definition.

Deprecations

  • The DataBricksPysparkStepLauncher, EmrPySparkStepLauncher, and any custom subclass of StepLauncher have been marked as deprecated, but will not be removed from the codebase until Dagster 2.0 is released, meaning they will continue to function as they currently do for the foreseeable future. Their functionality has been superseded by the interfaces provided by dagster-pipes, and so future development work will be focused there.
  • The experimental @multi_asset_sensor has been marked as deprecated, but will not be removed from the codebase until Dagster 2.0 is released, meaning it will continue to function as it currently does for the foreseeable future. Its functionality has been largely superseded by the AutomationCondition system.

Breaking changes

  • dagster no longer supports Python 3.8, which hit EOL on 2024-10-07.
  • dagster now requires pydantic>=2 .
  • Passing a custom PartitionsDefinition subclass into a Definitions object now issues an error instead of a deprecation warning.
  • AssetExecutionContext is no longer a subclass of OpExecutionContext. At this release, AssetExecutionContext and OpExecutionContext implement the same methods, but in the future, the methods implemented by each class may diverge. If you have written helper functions with OpExecutionContext type annotations, they may need to be updated to include AssetExecutionContext depending on your usage. Explicit calls to isinstance(context, OpExecutionContext) will now fail if context is an AssetExecutionContext.
  • The dagster/relation_identifier metadata key has been renamed to dagster/table_name.
  • The asset_selection parameter on AutomationConditionSensorDefinition has been renamed to target, to align with existing sensor APIs.
  • The experimental freshness_policy_sensor has been removed, as it relies on the long-deprecated FreshnessPolicy API.
  • The deprecated external_assets_from_specs and external_asset_from_spec methods have been removed. Users should use AssetsDefinition(specs=[...]), or pass specs directly into the Definitions object instead.
  • AssetKey objects can no longer be iterated over or indexed in to. This behavior was never an intended access pattern and in all observed cases was a mistake.
  • [dagster-ge] dagster-ge now only supports great_expectations>=0.17.15. The ge_validation_op_factory API has been replaced with the API previously called ge_validation_op_factory_v3.
  • [dagster-aws] Removed deprecated parameters from dagster_aws.pipes.PipesGlueClient.run.
  • [dagster-embedded-elt] Removed deprecated parameter dlt_dagster_translator from @dlt_assets. The dagster_dlt_translator parameter should be used instead.

Migrating to 1.8.0

Notable behavior changes

  • The Definitions constructor will no longer raise errors when the provided definitions aren’t mutually resolve-able – e.g. when there are conflicting definitions with the same name, unsatisfied resource dependencies, etc. These errors will still be raised at code location load time. The new Definitions.validate_loadable static method also allows performing the validation steps that used to occur in constructor.

  • The “Unsynced” label on an asset is no longer transitive, i.e. it no longer displays purely on account of a parent asset being labeled “Unsynced”. This helps avoid “Unsynced label fatigue”, where huge portions of the graph often have the label because of a distant ancestor. And it also helps the asset graph UI load faster.

  • The Run Status column on the Backfills page has been removed. This column was only filled out for backfills of jobs. Users should instead click on the backfill to see the status of each run.

  • The default behavior for evaluating AutoMaterializePolicy and AutomationCondition objects has changed. Previously, all assets were evaluated in a single process on the AssetDaemon , and evaluation history would show up in the UI in a special-purpose tab. Now, a default AutomationConditionSensorDefinition with the name "default_automation_condition_sensor" will be constructed for each code location, and a history of evaluations can be accessed by navigating to the page of that sensor. These changes are intended to provide a consistent UI/UX for interacting with automation concepts, and the sensor-based APIs allow for greater isolation between separate sets of assets.

    • The core work of these sensors is still handled by the AssetDaemon, so this will need to continue running for your deployment.
    • If desired, you can retain the current behavior by setting the following in your dagster.yaml file:
    auto_materialize:
      use_sensors: true
  • The datetime objects that are exposed in Dagster public APIs are now standard Python datetime.datetime objects with timezones, instead of Pendulum datetime objects. Technically, this is not a breaking change since Dagster’s public API uses datetime.datetime in our APIs, but Pendulum datetimes expose some methods (like add and subtract) that are not available on standard datetime.datetime objects. If your code was using methods that are only available on Pendulum datetimes, you can transform your datetimes back to Pendulum datetimes before using them.

    • For example, an asset like this:
    from dagster import asset, AssetExecutionContext
    
    @asset
    def my_asset(context: AssetExecutionContext):
      window_start, window_end = context.partition_time_window
      in_an_hour = window_start.add(hours=1) # will break since add() is only defined in pendulum
    • could be changed to this in order to continue using pendulum datetimes:
    from dagster import asset, AssetExecutionContext
    import pendulum
    
    @asset
    def my_asset(context: AssetExecutionContext):
      window_start, window_end = context.partition_time_window
        window_start = pendulum.instance(window_start) # transform to a pendulum time
    
      in_an_hour = window_start.add(hours=1) # will continue working

Breaking changes

  • AutoMaterializeSensorDefinition has been renamed to AutomationConditionSensorDefinition. All other functionality is identical.
  • “Op job versioning and memoization”, an experimental and deprecated pre-1.0 feature, has been removed. This feature has been superseded for a long time by code_version , data versions, and automation conditions. MemoizableIOManager, VersionStrategy, SourceHashVersionStrategy, OpVersionContext, ResourceVersionContext, and MEMOIZED_RUN_TAG have been removed.
  • The experimental and deprecated build_asset_with_blocking_check has been removed. Use the blocking argument on @asset_check instead.
  • [dagster-dbt] Support for setting freshness policies through dbt metadata on field +meta.dagster_freshness_policy has been removed. Use +meta.dagster.freshness_policy instead.
  • [dagster-dbt] KeyPrefixDagsterDbtTranslator has been removed. To modify the asset keys for a set of dbt assets, implementDagsterDbtTranslator.get_asset_key() instead.
  • [dagster-dbt] Support for setting auto-materialize policies through dbt metadata on field +meta.dagster_auto_materialize_policy has been removed. Use +meta.dagster.auto_materialize_policy instead.
  • [dagster-dbt] Support for dbt-core==1.6.* has been removed because the version is now end-of-life.
  • [dagster-dbt] Support for load_assets_from_dbt_project, load_assets_from_dbt_manifest, and dbt_cli_resource has been removed. Use @dbt_assets, DbtCliResource, and DbtProject instead to define how to load dbt assets from a dbt project and to execute them.
  • [dagster-dbt] Support for rebuilt ops like dbt_run_op, dbt_compile_op, etc has been removed. Use @op and DbtCliResource directly to execute dbt commands in an op.

Deprecations

  • The experimental external_assets_from_specs API has been deprecated. Instead, you can directly pass AssetSpec objects to the assets argument of the Definitions constructor.

  • AutoMaterializePolicy, AutoMaterializeRule, and the auto_materialize_policy arguments to @asset and AssetSpec have been marked as deprecated, and the new AutomationCondition API and automation_condition argument should be used instead. These changes are intended to provide a more consistent, composable, and flexible experience for users interested in asset-focused automation. A full migration guide can be found here, and a more detailed explanation of the thought process behind these changes can be found in the original RFC.

    • AutoMaterializePolicys and AutomationConditions can interoperate without issue, meaning you do not need to migrate all assets at the same time.
  • The partitions_def parameter on define_asset_job is now deprecated. The partitions_def for an asset job is determined from the partitions_def attributes on the assets it targets, so this parameter is redundant.

  • The asset_partition_key_for_output, asset_partition_keys_for_output, and asset_partition_key_range_for_output, and asset_partitions_time_window_for_output methods on OpExecutionContext have been deprecated. Instead, use the corresponding property: partition_key, partition_keys, partition_key_range, or partition_time_window.

  • SourceAsset is deprecated, in favor of AssetSpec. You can now use AssetSpecs in any of the places you could previously use SourceAssets, including passing them to the assets argument of Definitions, passing them to the assets argument of materialize, and supplying them as inputs in op graphs. AssetSpec has all the properties that SourceAsset does, except for io_manager_key. To set an IO manager key on an AssetSpec, you can supply a metadata entry with the "dagster/io_manager_key" key:

    # before
    from dagster import SourceAsset
    my_asset = SourceAsset("my_asset", io_manager_key="abc")
    
    # after
    from dagster import AssetSpec
    my_asset = AssetSpec("my_asset", metadata={"dagster/io_manager_key": "abc"})
  • [dagster-shell] The dagster-shell package, which exposes create_shell_command_op and create_shell_script_op, has been deprecated. Instead, use PipesSubprocessClient, from the dagster package.

  • [dagster-airbyte] load_assets_from_airbyte_project is now deprecated, because the Octavia CLI that it relies on is an experimental feature that is no longer supported. Use build_airbyte_assets or load_assets_from_airbyte_project instead.

Migrating to 1.7.0

Breaking Changes

  • Creating a run with a custom non-UUID run_id was previously private and only used for testing. It will now raise an exception.
  • [community-contribution] Previously, calling get_partition_keys_in_range on a MultiPartitionsDefinition would erroneously return partition keys that were within the one-dimensional range of alphabetically-sorted partition keys for the definition. Now, this method returns the cartesian product of partition keys within each dimension’s range. Thanks, @mst!
  • Added AssetCheckExecutionContext to replace AssetExecutionContext as the type of the context param passed in to @asset_check functions. @asset_check was an experimental decorator.
  • [experimental] @classmethod decorators have been removed from [dagster-embedded-slt.sling](http://dagster-embedded-slt.sling) DagsterSlingTranslator
  • [dagster-dbt] @classmethod decorators have been removed from DagsterDbtTranslator.
  • [dagster-k8s] The default merge behavior when raw kubernetes config is supplied at multiple scopes (for example, at the instance level and for a particluar job) has been changed to be more consistent. Previously, configuration was merged shallowly by default, with fields replacing other fields instead of appending or merging. Now, it is merged deeply by default, with lists appended to each other and dictionaries merged, in order to be more consistent with how kubernetes configuration is combined in all other places. See the docs for more information, including how to restore the previous default merge behavior.

Deprecations

  • AssetSelection.keys() has been deprecated. Instead, you can now supply asset key arguments to AssetSelection.assets() .
  • Run tag keys with long lengths and certain characters are now deprecated. For consistency with asset tags, run tags keys are expected to only contain alpha-numeric characters, dashes, underscores, and periods. Run tag keys can also contain a prefix section, separated with a slash. The main section and prefix section of a run tag are limited to 63 characters.
  • AssetExecutionContext has been simplified. Op-related methods and methods with existing access paths have been marked deprecated. For a full list of deprecated methods see this GitHub Discussion.
  • The metadata property on InputContext and OutputContext has been deprecated and renamed to definition_metadata .
  • FreshnessPolicy is now deprecated. For monitoring freshness, use freshness checks instead. If you are using AutoMaterializePolicy.lazy(), FreshnessPolicy is still recommended, and will continue to be supported until an alternative is provided.

Migrating to 1.6.0

Breaking changes

Dagster Ingestion-as-Code is being deprecated

With Dagster 1.1.8, we launched experimental “ingestion-as-code” functionality for our Airbyte integration, in response to user feedback that users would like to manage their Airbyte connections in code. In the months since, Airbyte has released an official Terraform provider which accomplishes many of the same goals, making ingestion-as-code largely redundant.

In light of this, we will no longer be publishing new versions of the dagster-managed-elements package. dagster_airbyte.AirbyteManagedElementReconciler and objects in dagster_airbyte.managed.* will be removed.

We suggest that users consider the official Terraform provider if they would like to continue managing their connections in code.

I/O manager handle_output will no longer be called when the output typing type is Nothing

Most Dagster-maintained I/O managers include special logic that does not store outputs typed as None or Nothing (either via return type annotation or explicitly setting the type in Out).

In 1.6, the Dagster framework will no longer invoke the IOManager.handle_output at all for outputs with these types. This ensures that I/O managers behave consistently and protects against storing unnecessary None s in storage.

For some I/O managers, e.g. the InMemoryIOManager and some user-developed I/O managers, this change may result in input-loading errors when assets downstream try to use the default IO manager to load the upstream output:

@asset
def upstream() -> None:
    # when this asset is materialized, no `None` value will be stored

@asset
def downstream(upstream):
    # if the default IO manager is the InMemoryIOManager, then, when this asset
    # is executed, it will hit a load_input error because it can't find the
    # stored value corresponding to "upstream"

The best way to avoid these errors is to write the downstream asset in a way that IOManager.load_input won’t be invoked:

@asset(deps=[upstream])
def downstream():
    # because `deps` is used instead of a function argument,
    # IOManager.load_input won't be invoked

Deprecations

dbt

  • Prebuilt ops for executing common dbt Core operations (e.g. dbt_build_op, dbt_compile_op, …) have been marked as deprecated. Instead, we recommend creating your op using the @op decorator and DbtCliResource directly.
  • load_assets_from_dbt_manifest and load_assets_from_dbt_project have been marked as deprecated. Instead, we recommend using @dbt_assets, DbtCliResource, and DagsterDbtTranslator.
    • For examples on how to use @dbt_assets and DbtCliResource to execute commands like dbt run or dbt build on your dbt project, see our API docs.
    • For examples on how to customize your dbt software-defined assets using DagsterDbtTranslator, see the reference.
    • To replicate the behavior of load_assets_from_dbt_project, which generates a dbt manifest at run time using dbt parse, see the reference.
    • To replicate the behavior of load_assets_from_dbt_manifest:
# Before, using `load_assets_from_dbt_manifest`
from dagster_dbt import load_assets_from_dbt_manifest

my_dbt_assets = load_assets_from_dbt_manifest(
    manifest=manifest,
    use_build_command=True,
)

# After, using `@dbt_assets`, `DbtCliResource`, and `DagsterDbtTranslator
from dagster import AssetExecutionContext
from dagster_dbt import dbt_assets, DbtCliResource

@dbt_assets(manifest=manifest)
def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource):
    yield from dbt.cli(["build"], context=context).stream()
  • When using @dbt_assets, if a time window partition definition is used without an explicit backfill policy, the backfill policy now defaults to a BackfillPolicy.single_run() instead of BackfillPolicy.multi_run().

Migrating to 1.5.0

Breaking changes

  • The UI dialog for launching a backfill no longer includes a toggle to determine whether the backfill is launched as a single run or multiple runs. This toggle was misleading, because it implied that all backfills could be launched as single-run backfills, when it actually required special handling in the implementations of the assets targeted by the backfill to achieve this behavior. Instead, whether to execute a backfill as a single run is now determined by a setting on the asset definition. To enable single-run backfills, set backfill_policy=BackfillPolicy.single_run() on the asset definitions. Refer to the docs on single-run backfills for more information.

  • AssetExecutionContext is now a subclass of OpExecutionContext, not a type alias. The code

def my_helper_function(context: AssetExecutionContext):
    ...

@op
def my_op(context: OpExecutionContext):
    my_helper_function(context)

will cause type checking errors. To migrate, update type hints to respect the new subclassing.

  • AssetExecutionContext cannot be used as the type annotation for @ops. To migrate, update the type hint in @op to OpExecutionContext. @ops that are used in @graph_assets may still use the AssetExecutionContext type hint.
# old
@op
def my_op(context: AssetExecutionContext):
    ...

# correct
@op
def my_op(context: OpExecutionContext):
    ...
  • AssetCheckResult(success=True) is renamed to AssetCheckResult(passed=True)

  • Asset checks defined with Dagster version 1.4 will no longer work with Dagster Cloud, or with Dagster UI 1.5. Upgrade your dagster library to continue using checks.

Migrating to 1.4.0

Deprecations

  • The dagit python package and all references to it are now deprecated. We will continue to publish dagit and support APIs that used the term “dagit” until v2.0, but you should transition to newer dagster-webserver package. This is a drop-in replacement for dagit. Like dagit, it exposes an executable of the same name as the package itself, i.e. dagster-webserver.
  • Any Dockerfiles or other Python environment specifications used for running the webserver now use dagster-webserver instead, e.g.:
# no (deprecated)
RUN pip install dagster dagit ...
...
ENTRYPOINT ["dagit", "-h", "0.0.0.0", "-p", "3000"]

# yes
RUN pip install dagster dagster-webserver
...
ENTRYPOINT ["dagster-webserver", "-h", "0.0.0.0", "-p", "3000"]
  • [Helm Chart] Three fields that were using the term “dagit” have been deprecated and replaced with “dagsterWebserver” instead:
# no (deprecated)
dagit:
  ...
  # ...
ingress:
  dagit: ...
  readOnlyDagit: ...

# yes
dagsterWebserver:
  ...
  # ...
ingress:
  dagsterWebserver: ...
  readOnlyDagsterWebserver: ...
  • We’ve deprecated the non_argument_deps parameter of @asset and @multi_asset in favor of a new deps parameter. To update your code to use deps, simply rename any instances of non_argument_deps to deps and change the type from a set to list. Additionally, you may also want to begin passing the python symbols for assets, rather than their AssetKeys to improve in-editor experience with type-aheads and linting.
@asset
def my_asset():
   ...

@asset(
   non_argument_deps={"my_asset"}
)
def a_downstream_asset():
   ...

# becomes

@asset
def my_asset():
   ...

@asset(
   deps=["my_asset"]
)
def a_downstream_asset():
   ...

# or

@asset
def my_asset():
   ...

@asset(
   deps=[my_asset]
)
def a_downstream_asset():
   ...
  • [Dagster Cloud ECS Agent] We've introduced performance improvements that rely on the AWS Resource Groups Tagging API. To enable, grant your agent's IAM policy permission to tag:GetResources. Without this policy, the ECS Agent will log a deprecation warning and fall back to its old behavior (listing all ECS services in the cluster and then listing each service's tags).
  • [dagster-dbt] DbtCliClientResource, dbt_cli_resource and DbtCliOutput are now being deprecated in favor of DbtCliResource. dagster-dbt Asset APIs like load_assets_from_dbt_manifest and load_assets_from_dbt_project will continue to work if given either a DbtCliClientResource or DbtCliResource.
# old
@op
def my_dbt_op(dbt_resource: DbtCliClientResource):
    dbt: DbtCliClient = dbt.get_client()

    dbt.cli("run")

    dbt.cli("run", full_refresh=True)

    dbt.cli("test")
    manifest_json = dbt.get_manifest_json()

# new
with Path("my/dbt/manifest").open() as handle:
    manifest = json.loads(dbt_manifest.read())

@op
def my_dbt_op(dbt: DbtCliResource):
   dbt.cli(["run"], manifest=manifest).stream()

   dbt.cli(["run", "--full-refresh"], manifest=manifest).stream()

   dbt_test_invocation = dbt.cli(["test"], manifest_manifest).stream()
   manifest_json = dbt_test_invocation.get_artifact("manifest.json")

# old
dbt_assets = load_assets_from_dbt_project(project_dir="my/dbt/project")

defs = Definitions(
    assets=dbt_assets,
    resources={
        "dbt": DbtCliClientResource(project_dir="my/dbt/project")
    },
)

# new
dbt_assets = load_assets_from_dbt_project(project_dir="my/dbt/project")

defs = Definitions(
    assets=dbt_assets,
    resources={
        "dbt": DbtCliResource(project_dir="my/dbt/project")
    }
)
  • The following arguments on load_assets_from_dbt_project and load_assets_from_dbt_manifest are now deprecated in favor of other options. Arguments will continue to work when passed into these functions, but a deprecation warning will be emitted.
Deprecated Arguments Recommendation
key_prefix Instead, provide a custom DagsterDbtTranslator that overrides get_asset_key
source_key_prefix Instead, provide a custom DagsterDbtTranslator that overrides get_asset_key
op_name Use the @dbt_assets decorator if you need to customize your op name.
manifest_json Use the manifest parameter instead.
display_raw_sql Instead, provide a custom DagsterDbtTranslator that overrides get_description.
selected_unique_ids Use the select parameter instead.
dbt_resource_key Use the @dbt_assets decorator if you need to customize your resource key.
use_build_command Use the @dbt_assets decorator if you need to customize the underlying dbt commands.
partitions_def Use the @dbt_assets decorator to define partitioned dbt assets.
partition_key_to_vars_fn Use the @dbt_assets decorator to define partitioned dbt assets.
runtime_metadata_fn Use the @dbt_assets decorator if you need to customize runtime metadata.
node_info_to_asset_key_fn Instead, provide a custom DagsterDbtTranslator that overrides get_asset_key.
node_info_to_group_fn Instead, configure dagster groups on a dbt resource's meta field, assign dbt groups, or provide a custom DagsterDbtTranslator that overrides get_group_name.
node_info_to_auto_materialize_policy_fn Instead, configure Dagster auto-materialize policies on a dbt resource's meta field.
node_info_to_freshness_policy_fn Instead, configure Dagster freshness policies on a dbt resource's meta field.
node_info_to_definition_metadata_fn Instead, provide a custom DagsterDbtTranslator that overrides get_metadata.

Breaking changes

  • From this release forward Dagster will no longer be tested against Python 3.7. Python 3.7 reached end of life on June 27th 2023 meaning it will no longer receive any security fixes. Previously releases will continue to work on 3.7. Details about moving to 3.8 or beyond can be found at https://docs.python.org/3/whatsnew/3.8.html#porting-to-python-3-8 .
  • build_asset_reconciliation_sensor (Experimental) has been removed. It was deprecated in 1.3 in favor of AutoMaterializePolicy. Docs are here.
  • The dagster-dbt integration with dbt-rpc has been removed, as the dbt plugin is being deprecated.
  • Previously, DbtCliResource was a class alias for DbtCliClientResource. Now, DbtCliResource is a new resource with a different API. Furthermore, it requires at least dbt-core>=1.4 to run.
  • [Helm Chart] If upgrading an existing installation to 1.4 and the dagit.nameOverride value is set, you will need to either change the value or delete the existing deployment to allow helm to update values that can not be patched for the rename from dagit to dagster-webserver.
  • [dagster-dbt] load_assets_from_dbt_project and load_assets_from_dbt_manifest now default to use_build=True. To switch back to the previous behavior, use use_build=False.
from dagster_dbt import group_from_dbt_resource_props_fallback_to_directory

load_assets_from_dbt_project(
    ...,
    use_build=False,
)
  • [dagster-dbt] The default assignment of groups to dbt models loaded from load_assets_from_dbt_project and load_assets_from_dbt_manifest has changed. Rather than assigning a group name using the model’s subdirectory, a group name will be assigned using the dbt model’s dbt group. To switch back to the previous behavior, use the following utility function, group_from_dbt_resource_props_fallback_to_directory:
from dagster_dbt import group_from_dbt_resource_props_fallback_to_directory

load_assets_from_dbt_project(
    ...,
    node_info_to_group_fn=group_from_dbt_resource_props_fallback_to_directory,
)
  • [dagster-dbt] The argument node_info_to_definition_metadata_fn for load_assets_from_dbt_project and load_assets_from_dbt_manifest now overrides metadata instead of adding to it. To switch back to the previous behavior, use the following utility function:
from dagster_dbt import default_metadata_from_dbt_resource_props

def my_metadata_from_dbt_resource_props(dbt_resource_props):
    my_metadata = {...}
    return {**default_metadata_from_dbt_resource_props(dbt_resource_props), **my_metadata}

load_assets_from_dbt_manifest(
    ...,
    node_info_to_definition_metadata_fn=my_metadata_from_dbt_resource_props
)
  • [dagster-dbt] The arguments for load_assets_from_dbt_project and load_assets_from_dbt_manifest now must be specified using keyword arguments.
  • [dagster-dbt] When using the new DbtCliResource with load_assets_from_dbt_project and load_assets_from_dbt_manifest, stdout logs from the dbt process will now appear in the compute logs instead of the event logs. To view these compute logs, you should ensure that your Dagster instance has compute log storage configured.

Migrating to 1.3.0

Deprecations

  • [deprecation, 1.4.0] build_asset_reconciliation_sensor, which was experimental, is now deprecated, in favor of setting AutoMaterializePolicy on assets. Refer to the docs on AutoMaterializePolicy for how this works: https://docs.dagster.io/concepts/assets/asset-auto-execution.
  • [deprecation, 2.0.0] Previously, the recommended pattern for creating a run request for a given partition of a job within a sensor was yield job_def.run_request_for_partition(partition_key="..."). This has been deprecated, in favor of yield RunRequest(partition_key="...").

Breaking Changes

  • By default, resources defined on Definitions are now automatically bound to jobs. This will only result in a change in behavior if you a) have a job with no "io_manager" defined in its resource_defs and b) have supplied an IOManager with key "io_manager" to the resource_defs argument of your Definitions. Prior to 1.3.0, this would result in the job using the default filesystem-based IOManager for the key "io_manager". In 1.3.0, this will result in the "io_manager" supplied to your Definitions being used instead. The BindResourcesToJobs wrapper, introduced in 1.2 to simulate this behavior, no longer has any effect.
  • [experimental] The minutes_late and previous_minutes_late properties on the experimental FreshnesPolicySensorContext have been renamed to minutes_overdue and previous_minutes_overdue, respectively.
  • [previously deprecated, 0.15.0] The metadata_entries arguments to user-constructed events (AssetObservation,  AssetMaterialization,  ExpectationResult,  TypeCheck,  Failure,  OutputDynamicOutput), as well as the DagsterType object have been removed. Instead, a dictionary of metadata should be passed into the metadata argument.
  • [dagster-celery-k8s] The default kubernetes namespace for run pods when using the Dagster Helm chart with the CeleryK8sRunLauncher is now the same namespace as the Helm chart, instead of the default namespace. To restore the previous behavior, you can set the celeryK8sRunLauncher.jobNamespace field to the string default.
  • [dagster-snowflake-pandas] Prior to dagster-snowflake version 0.19.0 the Snowflake I/O manager converted all timestamp data to strings before loading the data in Snowflake, and did the opposite conversion when fetching a DataFrame from Snowflake. The I/O manager now ensures timestamp data has a timezone attached and stores the data as TIMESTAMP_NTZ(9) type. If you used the Snowflake I/O manager prior to version 0.19.0 you can set the store_timestamps_as_strings=True configuration value for the Snowflake I/O manager to continue storing time data as strings while you do table migrations.

To migrate a table created prior to 0.19.0 to one with a TIMESTAMP_NTZ(9) type, you can run the follow SQL queries in Snowflake. In the example, our table is located at database.schema.table and the column we want to migrate is called time:

// Add a column of type TIMESTAMP_NTZ(9)
ALTER TABLE database.schema.table
ADD COLUMN time_copy TIMESTAMP_NTZ(9)

// copy the data from time and convert to timestamp data
UPDATE database.schema.table
SET time_copy = to_timestamp_ntz(time)

// drop the time column
ALTER TABLE database.schema.table
DROP COLUMN time

// rename the time_copy column to time
ALTER TABLER database.schema.table
RENAME COLUMN time_copy TO time

Migrating to 1.2.0

Database migration

1.2.0 adds a set of optional database schema migrations, which can be run via dagster instance migrate:

  • Improves Dagit performance by adding a database index which should speed up job run views.
  • Enables dynamic partitions definitions by creating a database table to store partition keys. This feature is experimental and may require future migrations.
  • Adds a primary key id column to the kvs, daemon_heartbeats and instance_info tables, enforcing that all tables have a primary key.

Breaking changes

Core changes

  • The minimum grpcio version supported by Dagster has been increased to 1.44.0 so that Dagster can support both protobuf 3 and protobuf 4. Similarly, the minimum protobuf version supported by Dagster has been increased to 3.20.0. We are working closely with the gRPC team on resolving the upstream issues keeping the upper-bound grpcio pin in place in Dagster, and hope to be able to remove it very soon.
  • Prior to 0.9.19, asset keys were serialized in a legacy format. This release removes support for querying asset events serialized with this legacy format. Contact #dagster-support for tooling to migrate legacy events to the supported version. Users who began using assets after 0.9.19 will not be affected by this change.

Changes to experimental APIs

  • [experimental] LogicalVersion has been renamed to DataVersion and LogicalVersionProvenance has been renamed to DataProvenance.
  • [experimental] Methods on the experimental DynamicPartitionsDefinition to add, remove, and check for existence of partitions have been removed. Refer to documentation for updated API methods.

Removal of deprecated APIs

  • [previously deprecated, 0.15.0] Static constructors on MetadataEntry have been removed.
  • [previously deprecated, 1.0.0] DagsterTypeMaterializer, DagsterTypeMaterializerContext, and @dagster_type_materializer have been removed.
  • [previously deprecated, 1.0.0] PartitionScheduleDefinition has been removed.
  • [previously deprecated, 1.0.0] RunRecord.pipeline_run has been removed (use RunRecord.dagster_run).
  • [previously deprecated, 1.0.0] DependencyDefinition.solid has been removed (use DependencyDefinition.node).
  • [previously deprecated, 1.0.0] The pipeline_run argument to build_resources has been removed (use dagster_run)

Extension Libraries

  • [dagster-snowflake] The execute_queryand execute_queries methods of the SnowflakeResource now have consistent behavior based on the values of the fetch_results and use_pandas_result parameters. If fetch_results is True, the standard Snowflake result will be returned. If fetch_results and use_pandas_result are True, a pandas DataFrame will be returned. If fetch_results is False and use_pandas_result is True, an error will be raised. If both are False, no result will be returned.

  • [dagster-snowflake] The execute_queries command now returns a list of DataFrames when use_pandas_result is True, rather than appending the results of each query to a single DataFrame.

  • [dagster-shell] The default behavior of the execute and execute_shell_command functions is now to include any environment variables in the calling op. To restore the previous behavior, you can pass in env={} to these functions.

  • [dagster-k8s] Several Dagster features that were previously disabled by default in the Dagster Helm chart are now enabled by default. These features are:

    • The run queue (by default, without a limit). Runs will now always be launched from the Daemon.
    • Run queue parallelism - by default, up to 4 runs can now be pulled off of the queue at a time (as long as the global run limit or tag-based concurrency limits are not exceeded).
    • Run retries - runs will now retry if they have the dagster/max_retries tag set. You can configure a global number of retries in the Helm chart by setting run_retries.max_retries to a value greater than the default of 0.
    • Schedule and sensor parallelism - by default, the daemon will now run up to 4 sensors and up to 4 schedules in parallel.
    • Run monitoring - Dagster will detect hanging runs and move them into a FAILURE state for you (or start a retry for you if the run is configured to allow retries). By default, runs that have been in STARTING for more than 5 minutes will be assumed to be hanging and will be terminated.

    Each of these features can be disabled in the Helm chart to restore the previous behavior.

  • [dagster-k8s] The experimental [k8s_job_op](https://docs.dagster.io/_apidocs/libraries/dagster-k8s#dagster_k8s.k8s_job_op) op and [execute_k8s_job](https://docs.dagster.io/_apidocs/libraries/dagster-k8s#dagster_k8s.execute_k8s_job) functions no longer automatically include configuration from a dagster-k8s/config tag on the Dagster job in the launched Kubernetes job. To include raw Kubernetes configuration in a k8s_job_op, you can set the container_config, pod_template_spec_metadata, pod_spec_config, or job_metadata config fields on the k8s_job_op (or arguments to the execute_k8s_job function).

  • [dagster-databricks] The integration has now been refactored to support the official Databricks API.

    • create_databricks_job_op is now deprecated. To submit one-off runs of Databricks tasks, you must now use the create_databricks_submit_run_op.
    • The Databricks token that is passed to the databricks_client resource must now begin with https://.

Migrating to 1.1.1

Database migration

Two optional database schema migrations, which can be run via dagster instance migrate:

  • Improves Dagit performance by adding database indexes which should speed up the run view as well as a range of asset-based queries.
  • Enables multi-dimensional asset partitions and asset versioning.

Breaking changes and deprecations

  • define_dagstermill_solid, a legacy API, has been removed from dagstermill. Use define_dagstermill_op or define_dagstermill_asset instead to create an op or asset from a Jupyter notebook, respectively.
  • The internal ComputeLogManager API is marked as deprecated in favor of an updated interface: CapturedLogManager. It will be removed in 1.2.0. This should only affect dagster instances that have implemented a custom compute log manager.

Migrating to 1.0

  • Most of the classes and decorators in Dagster have moved to using a bare asterisk argument, enforcing that arguments are provided as keywords. If using long lists of non-keyword arguments with dagster decorators or classes, you will likely run into errors in 1.0. This can be fixed by switching to using keyword arguments.
  • In an upcoming 1.x release, we plan to make a change that renders values supplied to configured in Dagit. Up through this point, values provided to configured have not been sent anywhere outside the process where they were used. This change will mean that, like other places you can supply configuration, configured is not a good place to put secrets: You should not include any values in configuration that you don't want to be stored in the Dagster database and displayed inside Dagit.
  • All submodules of dagster have been marked private. We currently provide aliasing to avoid incurring linting errors, but in a future 1.x release, this will be removed, and imports from submodules of dagster may incur errors.
  • The dagster.experimental submodule has been deleted, which previously contained dynamic output APIs, which are available from the top level of the dagster module.
  • As of 1.0, Dagster no longer guarantees support for python 3.6. This is in line with PEP 494, which outlines that 3.6 has reached end of life.
  • Dagster’s integration libraries haven’t yet achieved the same API maturity as Dagster core. For this reason, all integration libraries will remain on a pre-1.0 (0.16.x) versioning track for the time being. However, 0.16.x library releases remain fully compatible with Dagster 1.x. In the coming months, we will graduate integration libraries one-by-one to the 1.x versioning track as they achieve API maturity. If you have installs of the form:
pip install dagster=={DAGSTER_VERSION} dagster-somelibrary=={DAGSTER_VERSION}

this should be converted to:

pip install dagster=={DAGSTER_VERSION} dagster-somelibrary

to make sure the correct library version is installed.

Legacy API Removals

  • Dagster's legacy APIs, which were marked "legacy" in 0.13.0, have been removed. This includes @solid, SolidDefinition, @pipeline, PipelineDefinition, @composite_solid, CompositeSolidDefinition, ModeDefinition, PresetDefinition, PartitionSetDefinition, InputDefinition, OutputDefinition, DynamicOutputDefinition, pipeline_failure_sensor, @hourly_schedule, @daily_schedule, @weekly_schedule, and @monthly_schedule. Here is a guide to migrating from the legacy APIs to the stable APIs.
  • Deprecated arguments to library ops have been switched to reflect stable APIs. This includes input_defs/output_defs arguments on define_dagstermill_op, which have been changed to ins/outs respectively, and input_defs argument on create_shell_script_op, which has been changed to ins.
  • The pipeline_selection argument has been removed from run_failure_sensor and related decorators / functions, and job_selection has been deprecated. Instead, use monitored_jobs.
  • ScheduleExecutionContext and SensorExecutionContext APIs have been removed. In 0.13.0, these were renamed to ScheduleEvaluationContext and SensorEvaluationContext respectively, and marked deprecated.
  • Along with the rest of the legacy APIs, execute_pipeline has been removed. The functionality previously supplied by execute_pipeline has been split between JobDefinition.execute_in_process (docs) and execute_job (docs). If you were previously using execute_pipeline for in-process testing, then JobDefinition.execute_in_process should replace. If using execute_pipeline for out-of-process execution, or non-testing workflows, then execute_job is the recommended replacement.
  • Alongside other removals of pipeline-related APIs, the dagster pipeline CLI subgroup has been removed in favor of dagster job.
  • The dagster new-project CLI subgroup has been removed in favor of dagster project.
  • AssetGroup and build_assets_job, which were advertised in an experimental iteration of software-defined assets, have been removed. Instead, check out the docs on grouping assets, and the docs on defining asset jobs.
  • The deprecated partition_mappings arguments on @asset and @multi_asset have been removed. Instead, user the partition_mapping argument the corresponding AssetIns.
  • The deprecated namespace arguments on @asset and AssetIn have been removed. Instead, use the key_prefix argument.
  • The input_defs and output_defs arguments on OpDefinition have been removed, and replaced with ins and outs arguments. input_defs/output_defs have been deprecated since 0.13.0.
  • The preset_defs argument on JobDefinition has been removed. When constructing a JobDefinition directly, config can be provided using the config argument instead. preset_defs has been deprecated since 0.13.0.
  • EventMetadata and EventMetadataEntryData APIs have been removed. Instead, metadata should be specified using the MetadataValue APIs.
  • APIs referencing pipelines/solids in extension libraries have been removed. This includes define_dagstermill_solid, make_dagster_pipeline_from_airflow_dag, create_databricks_job_solid, the various dbt_cli_* and dbt_rpc_* solids, bq_solid_for_queries, ge_validation_solid_factory, end_mlflow_run_on_pipeline_finished, the various shell_command_solid APIs, make_slack_on_pipeline_failure_sensor, snowflake_solid_for_query, end_mlflow_run_on_pipeline_finished, and create_spark_solid.
  • custom_path_fs_io_manager has been removed, as its functionality is entirely subsumed by the fs_io_manager, where a custom path can be specified via config.

Removed API List

This serves as an exhaustive list of the removed APIs.

From the main Dagster module:

  • AssetGroup
  • DagsterPipelineRunMetadataValue
  • CompositeSolidDefinition
  • InputDefinition
  • Materialization
  • ModeDefinition
  • OutputDefinition
  • PipelineDefinition
  • PresetDefinition
  • SolidDefinition
  • SolidInvocation
  • DynamicOutputDefinition
  • composite_solid
  • lambda_solid
  • pipeline
  • solid
  • pipeline_failure_sensor
  • CompositeSolidExecutionResult
  • PipelineExecutionResult
  • SolidExecutionResult
  • SolidExecutionContext
  • build_solid_context
  • PipelineRun
  • PipelineRunStatus
  • default_executors
  • execute_pipeline_iterator
  • execute_pipeline
  • execute_solid_within_pipeline
  • reexecute_pipeline_iterator
  • reexecute_pipeline
  • execute_solid
  • execute_solids_within_pipeline
  • build_assets_job
  • schedule_from_partitions
  • PartitionSetDefinition
  • ScheduleExecutionContext
  • SensorExecutionContext
  • PipelineFailureSensorContext
  • daily_schedule
  • hourly_schedule
  • monthly_schedule
  • weekly_schedule
  • create_offset_partition_selector
  • date_partition_range
  • identity_partition_selector
  • custom_path_fs_io_manager

From libraries (APIs removed in 0.16.0 onwards):

  • dagster_airflow.make_dagster_pipeline_from_airflow_dag
  • dagster_databricks.create_databricks_job_solid
  • dagster_dbt.dbt_cli_compile
  • dagster_dbt.dbt_cli_run
  • dagster_dbt.dbt_cli_run_operation
  • dagster_dbt.dbt_cli_snapshot
  • dagster_dbt.dbt_cli_snapshot_freshness
  • dagster_dbt.dbt_cli_test
  • dagster_dbt.create_dbt_rpc_run_sql_solid
  • dagster_dbt.dbt_rpc_run
  • dagster_dbt.dbt_rpc_run_and_wait
  • dagster_dbt.dbt_rpc_run_operation
  • dagster_dbt.dbt_rpc_run_operation_and_wait
  • dagster_dbt.dbt_rpc_snapshot
  • dagster_dbt.dbt_rpc_snapshot_and_wait
  • dagster_dbt.dbt_rpc_snapshot_freshness
  • dagster_dbt.dbt_rpc_snapshot_freshness_and_wait
  • dagster_dbt.dbt_rpc_test
  • dagster_dbt.dbt_rpc_test_and_wait
  • dagster_gcp.bq_solid_for_queries
  • dagster_ge.ge_validation_solid_factory
  • dagster_mlflow.end_mlflow_run_on_pipeline_finishes
  • dagster_shell.create_shell_command_solid
  • dagster_shell.create_shell_script_solid
  • dagster_shell.shell_solid
  • dagster_slack.make_slack_on_pipeline_failure_sensor
  • dagster_msteams.make_teams_on_pipeline_failure_sensor
  • dagster_snowflake.snowflake_solid_for_query
  • dagster_spark.create_spark_solid

Migrating to 0.15.0

All items below are breaking changes unless marked with (deprecation).

Software-defined assets

This release marks the official transition of software-defined assets from experimental to stable. We made some final changes to incorporate feedback and make the APIs as consistent as possible:

  • Support for adding tags to asset materializations, which was previously marked as experimental, has been removed.
  • Some of the properties of the previously-experimental AssetsDefinition class have been renamed. group_names is now group_names_by_key, asset_keys_by_input_name is now keys_by_input_name, and asset_keys_by_output_name is now keys_by_output_name, asset_key is now key, and asset_keys is now keys.
  • fs_asset_io_manager has been removed in favor of merging its functionality with fs_io_manager. fs_io_manager is now the default IO manager for asset jobs, and will store asset outputs in a directory named with the asset key. Similarly, removed adls2_pickle_asset_io_manager, gcs_pickle_asset_io_manager , and s3_pickle_asset_io_manager. Instead, adls2_pickle_io_manager, gcs_pickle_io_manager , and s3_pickle_io_manager now support software-defined assets.
  • (deprecation) The namespace argument on the @asset decorator and AssetIn has been deprecated. Users should use key_prefix instead.
  • (deprecation) AssetGroup has been deprecated. Users should instead place assets directly on repositories, optionally attaching resources using with_resources. Asset jobs should be defined using define_asset_job (replacing AssetGroup.build_job), and arbitrary sets of assets can be materialized using the standalone function materialize (replacing AssetGroup.materialize).
  • (deprecation) The outs property of the previously-experimental @multi_asset decorator now prefers a dictionary whose values are AssetOut objects instead of a dictionary whose values are Out objects. The latter still works, but is deprecated.

Event records

  • The get_event_records method on DagsterInstance now requires a non-None argument event_records_filter. Passing a None value for the event_records_filter argument will now raise an exception where previously it generated a deprecation warning.
  • Removed methods events_for_asset_key and get_asset_events, which have been deprecated since 0.12.0.

Extension libraries

  • [dagster-dbt] (breaks previously-experimental API) When using the load_assets_from_dbt_project or load_assets_from_dbt_manifest , the AssetKeys generated for dbt sources are now the union of the source name and the table name, and the AssetKeys generated for models are now the union of the configured schema name for a given model (if any), and the model name. To revert to the old behavior: dbt_assets = load_assets_from_dbt_project(..., node_info_to_asset_key=lambda node_info: AssetKey(node_info["name"]).
  • [dagster-k8s] In the Dagster Helm chart, user code deployment configuration (like secrets, configmaps, or volumes) is now automatically included in any runs launched from that code. Previously, this behavior was opt-in. In most cases, this will not be a breaking change, but in less common cases where a user code deployment was running in a different kubernetes namespace or using a different service account, this could result in missing secrets or configmaps in a launched run that previously worked. You can return to the previous behavior where config on the user code deployment was not applied to any runs by setting the includeConfigInLaunchedRuns.enabled field to false for the user code deployment. See the Kubernetes Deployment docs (https://docs.dagster.io/deployment/guides/kubernetes/deploying-with-helm#configure-your-user-deployment) for more details.
  • [dagster-snowflake] dagster-snowflake has dropped support for python 3.6. The library it is currently built on, snowflake-connector-python, dropped 3.6 support in their recent 2.7.5 release.

Other

  • The prior_attempts_count parameter is now removed from step-launching APIs. This parameter was not being used, as the information it held was stored elsewhere in all cases. It can safely be removed from invocations without changing behavior.
  • The FileCache class has been removed.
  • Previously, when schedules/sensors targeted jobs with the same name as other jobs in the repo, the jobs on the sensor/schedule would silently overwrite the other jobs. Now, this will cause an error.

Migrating to 0.14.0

If migrating from below 0.13.17, you can run

dagster instance migrate

This optional migration makes performance improvements to the runs page in Dagit.

Breaking Changes

  • The Dagster Daemon now uses the same workspace.yaml file as Dagit to locate your Dagster code. You should ensure that if you make any changes to your workspace.yaml file, they are included in both Dagit’s copy and the Dagster Daemon’s copy. When you make changes to the workspace.yaml file, you don’t need to restart either Dagit or the Dagster Daemon - in Dagit, you can reload the workspace from the Workspace tab, and the Dagster Daemon will periodically check the workspace.yaml file for changes every 60 seconds. If you are using the Dagster Helm chart, no changes are required to include the workspace in the Dagster Daemon.

  • In previous releases, it was possible to supply either an AssetKey, or a function that produced an AssetKey from an OutputContext as the asset_key argument to an Out/OutputDefinition. The latter behavior makes it impossible to gain information about these relationships without running a job, and has been deprecated. However, we still support supplying a static AssetKey as an argument.

  • We have renamed many of the core APIs that interact with ScheduleStorage, which keeps track of sensor/schedule state and ticks. The old term for the generic schedule/sensor “job” has been replaced by the term “instigator” in order to avoid confusion with the execution API introduced in 0.12.0. If you have implemented your own schedule storage, you may need to change your method signatures appropriately.

  • Dagit is now powered by Starlette instead of Flask. If you have implemented a custom run coordinator, you may need to make the following change:

    from flask import has_request_context, request
    
    def submit_run(self, context: SubmitRunContext) -> PipelineRun:
        jwt_claims_header = (
            request.headers.get("X-Amzn-Oidc-Data", None) if has_request_context() else None
        )

    Should be replaced by:

    def submit_run(self, context: SubmitRunContext) -> PipelineRun:
        jwt_claims_header = context.get_request_header("X-Amzn-Oidc-Data")
  • The Dagster Daemon now requires a workspace.yaml file, much like Dagit.

  • Ellipsis (“...”) is now an invalid substring of a partition key. This is because Dagit accepts an ellipsis to specify partition ranges.

  • [Helm] The Dagster Helm chart now only supported Kubernetes clusters above version 1.18.

Deprecation: Metadata API Renames

Dagster’s metadata API has undergone a signficant overhaul. Changes include:

  • To reflect the fact that metadata can be specified on definitions in addition to events, the following names are changing. The old names are deprecated, and will function as aliases for the new names until 0.15.0:
    • EventMetadata > MetadataValue
    • EventMetadataEntry > MetadataEntry
    • XMetadataEntryData > XMetadataValue (e.g. TextMetadataEntryData > TextMetadataValue)
  • The metadata_entries keyword argument to events and Dagster types is deprecated. Instead, users should use the metadata keyword argument, which takes a dictionary mapping string labels to MetadataValues.
  • Arbitrary metadata on In/InputDefinition and Out/OutputDefinition is deprecated. In 0.15.0, metadata passed for these classes will need to be resolvable to MetadataValue (i.e. function like metadata everywhere else in Dagster).
  • The description attribute of EventMetadataEntry is deprecated.
  • The static API of EventMetadataEntry (e.g. EventMetadataEntry.text) is deprecated. In 0.15.0, users should avoid constructing EventMetadataEntry objects directly, instead utilizing the metadata dictionary keyword argument, which maps string labels to MetadataValues.

Migrating to 0.13.0

Jobs, ops, and graphs have replaced pipelines, solids, modes, and presets as the stable core of the system. Here is a guide you can use to update your code using the legacy APIs into using the new Dagster core APIs. 0.13.0 is still compatible with the pipeline, solid, mode, and preset APIs, which means that you don't need to migrate your code to upgrade to 0.13.0.

Migrating to 0.12.0

The new experimental core API experience in Dagit uses some features that require a data migration. Before enabling the experimental core API flag in Dagit, you will first need to run this command:

dagster instance migrate

If you are not going to enable the experimental core API experience, this data migration is optional. However, you may still want to run the migration anyway, which will enable better performance in viewing the Asset catalog in Dagit.

Migrating to 0.11.0

Action Required: Run and event storage schema changes

Run this after migrating to 0.11.0:

dagster instance migrate

This release includes several schema changes to the Dagster storages that improve performance, allow support for MySQL, and enable new features like asset tags and reliable backfills. After upgrading to 0.11.0, run the dagster instance migrate command to migrate your instance storage to the latest schema.

Action Required: Schedule timezones

Schedules now run in UTC (instead of the system timezone) if no timezone has been set on the schedule. If you’re using a deprecated scheduler like SystemCronScheduler or K8sScheduler, we recommend that you switch to the native Dagster scheduler. The deprecated schedulers will be removed in the next Dagster release.

Action Required: Asset storage

If upgrading directly to 0.11.0 from 0.9.22 or lower, you might notice some asset keys missing from the catalog if they have not been materialized using a version 0.9.16 or greater. We removed some back-compatibility for performance reasons. If this is the case, you can either run dagster instance reindex or execute the appropriate pipelines to materialize those assets again. In either case, the full history of the asset will still be maintained.

Removals of Deprecated APIs

  • The instance argument to RunLauncher.launch_run has been removed. If you have written a custom RunLauncher, you’ll need to update the signature of that method. You can still access the DagsterInstance on the RunLauncher via the _instance parameter.
  • The has_config_entry, has_configurable_inputs, and has_configurable_outputs properties of solid and composite_solid have been removed.
  • The deprecated optionality of the name argument to PipelineDefinition has been removed, and the argument is now required.
  • The execute_run_with_structured_logs and execute_step_with_structured_logs internal CLI entry points have been removed. Use execute_run or execute_step instead.
  • The python_environment key has been removed from workspace.yaml. Instead, to specify that a repository location should use a custom python environment, set the executable_path key within a python_file or python_module key. See the docs for more information on configuring your workspace.yaml file.
  • [dagster-dask] The deprecated schema for reading or materializing dataframes has been removed. Use the read or to keys accordingly.

Breaking Changes

  • Names provided to alias on solids now enforce the same naming rules as solids. You may have to update provided names to meet these requirements.

  • The retries method on Executor should now return a RetryMode instead of a Retries. This will only affect custom Executor classes.

  • Submitting partition backfills in Dagit now requires dagster-daemon to be running. The instance setting in dagster.yaml to optionally enable daemon-based backfills has been removed, because all backfills are now daemon-based backfills.

    # removed, no longer a valid setting in dagster.yaml
    
    backfill:
      daemon_enabled: true
    

The corresponding value flag dagsterDaemon.backfill.enabled has also been removed from the Dagster helm chart.

  • The sensor daemon interval settings in dagster.yaml has been removed. The sensor daemon now runs in a continuous loop so this customization is no longer useful.

    # removed, no longer a valid setting in dagster.yaml
    
    sensor_settings:
      interval_seconds: 10
    

Migrating to 0.10.0

Action Required: Run and event storage schema changes

# Run after migrating to 0.10.0

$ dagster instance migrate

This release includes several schema changes to the Dagster storages that improve performance and enable new features like sensors and run queueing. After upgrading to 0.10.0, run the dagster instance migrate command to migrate your instance storage to the latest schema. This will turn off any running schedules, so you will need to restart any previously running schedules after migrating the schema. Before turning them back on, you should follow the steps below to migrate to DagsterDaemonScheduler.

New scheduler: DagsterDaemonScheduler

This release includes a new DagsterDaemonScheduler with improved fault tolerance and full support for timezones. We highly recommend upgrading to the new scheduler during this release. The existing schedulers, SystemCronScheduler and K8sScheduler, are deprecated and will be removed in a future release.

Steps to migrate

Instead of relying on system cron or k8s cron jobs, the DaemonScheduler uses the new dagster-daemon service to run schedules. This requires running the dagster-daemon service as a part of your deployment.

Refer to our deployment documentation for a guides on how to set up and run the daemon process for local development, Docker, or Kubernetes deployments.

If you are currently using the SystemCronScheduler or K8sScheduler:

  1. Stop any currently running schedules, to prevent any dangling cron jobs from being left behind. You can do this through the Dagit UI, or using the following command:

    dagster schedule stop --location {repository_location_name} {schedule_name}

    If you do not stop running schedules before changing schedulers, Dagster will throw an exception on startup due to the misconfigured running schedules.

  2. In your dagster.yaml file, remove the scheduler: entry. If there is no scheduler: entry, the DagsterDaemonScheduler is automatically used as the default scheduler.

  3. Start the dagster-daemon process. Guides can be found in our deployment documentations.

See our schedules troubleshooting guide for help if you experience any problems with the new scheduler.

If you are not using a legacy scheduler:

No migration steps are needed, but make sure you run dagster instance migrate as a part of upgrading to 0.10.0.

Deprecation: Intermediate Storage

We have deprecated the intermediate storage machinery in favor of the new IO manager abstraction, which offers finer-grained control over how inputs and outputs are serialized and persisted. Check out the IO Managers Overview for more information.

Steps to Migrate

  • We have deprecated the top level "storage" and "intermediate_storage" fields on run_config. If you are currently executing pipelines as follows:

    @pipeline
    def my_pipeline():
        ...
    
    execute_pipeline(
        my_pipeline,
        run_config={
            "intermediate_storage": {
                "filesystem": {"base_dir": ...}
            }
        },
    )
    
    execute_pipeline(
        my_pipeline,
        run_config={
            "storage": {
                "filesystem": {"base_dir": ...}
            }
        },
    )

    You should instead use the built-in IO manager fs_io_manager, which can be attached to your pipeline as a resource:

    @pipeline(
        mode_defs=[
            ModeDefinition(
                resource_defs={"io_manager": fs_io_manager}
            )
        ],
    )
    def my_pipeline():
        ...
    
    execute_pipeline(
        my_pipeline,
        run_config={
            "resources": {
                "io_manager": {"config": {"base_dir": ...}}
            }
        },
    )

    There are corresponding IO managers for other intermediate storages, such as the S3- and ADLS2-based storages

  • We have deprecated IntermediateStorageDefinition and @intermediate_storage.

    If you have written custom intermediate storage, you should migrate to custom IO managers defined using the @io_manager API. We have provided a helper method, io_manager_from_intermediate_storage, to help migrate your existing custom intermediate storages to IO managers.

    my_io_manager_def = io_manager_from_intermediate_storage(
        my_intermediate_storage_def
    )
    
    @pipeline(
        mode_defs=[
            ModeDefinition(
                resource_defs={
                    "io_manager": my_io_manager_def
                }
            ),
        ],
    )
    def my_pipeline():
        ...
  • We have deprecated the intermediate_storage_defs argument to ModeDefinition, in favor of the new IO managers, which should be attached using the resource_defs argument.

Removal: input_hydration_config and output_materialization_config

Use dagster_type_loader instead of input_hydration_config and dagster_type_materializer instead of output_materialization_config.

On DagsterType and type constructors in dagster_pandas use the loader argument instead of input_hydration_config and the materializer argument instead of dagster_type_materializer argument.

Removal: repository key in workspace YAML

We have removed the ability to specify a repository in your workspace using the repository: key. Use load_from: instead when specifying how to load the repositories in your workspace.

Deprecated: python_environment key in workspace YAML

The python_environment: key is now deprecated and will be removed in a future release.

Previously, when you wanted to load a repository location in your workspace using a different Python environment from Dagit’s Python environment, you needed to use a python_environment: key under load_from: instead of the python_file: or python_package: keys. Now, you can simply customize the executable_path in your workspace entries without needing to change to the python_environment: key.

For example, the following workspace entry:

- python_environment:
    executable_path: "/path/to/venvs/dagster-dev-3.7.6/bin/python"
    target:
      python_package:
        package_name: dagster_examples
        location_name: dagster_examples

should now be expressed as:

- python_package:
    executable_path: "/path/to/venvs/dagster-dev-3.7.6/bin/python"
    package_name: dagster_examples
    location_name: dagster_examples

See our Workspaces Overview for more information and examples.

Removal: config_field property on definition classes

We have removed the property config_field on definition classes. Use config_schema instead.

Removal: System Storage

We have removed the system storage abstractions, i.e. SystemStorageDefinition and @system_storage (deprecated in 0.9.0).

Please note that the intermediate storage abstraction is also deprecated and will be removed in 0.11.0. Use IO managers instead.

  • We have removed the system_storage_defs argument (deprecated in 0.9.0) to ModeDefinition, in favor of intermediate_storage_defs.
  • We have removed the built-in system storages, e.g. default_system_storage_defs (deprecated in 0.9.0).

Removal: step_keys_to_execute

We have removed the step_keys_to_execute argument to reexecute_pipeline and reexecute_pipeline_iterator, in favor of step_selection. This argument accepts the Dagster selection syntax, so, for example, *solid_a+ represents solid_a, all of its upstream steps, and its immediate downstream steps.

Breaking Change: date_partition_range

Starting in 0.10.0, Dagster uses the pendulum library to ensure that schedules and partitions behave correctly with respect to timezones. As part of this change, the delta parameter to date_partition_range (which determined the time different between partitions and was a datetime.timedelta) has been replaced by a delta_range parameter (which must be a string that's a valid argument to the pendulum.period function, such as "days", "hours", or "months").

For example, the following partition range for a monthly partition set:

date_partition_range(
    start=datetime.datetime(2018, 1, 1),
    end=datetime.datetime(2019, 1, 1),
    delta=datetime.timedelta(months=1)
)

should now be expressed as:

date_partition_range(
    start=datetime.datetime(2018, 1, 1),
    end=datetime.datetime(2019, 1, 1),
    delta_range="months"
)

Breaking Change: PartitionSetDefinition.create_schedule_definition

When you create a schedule from a partition set using PartitionSetDefinition.create_schedule_definition, you now must supply a partition_selector argument that tells the scheduler which partition to use for a given schedule time.

We have added two helper functions, create_offset_partition_selector and identity_partition_selector, that capture two common partition selectors (schedules that execute at a fixed offset from the partition times, e.g. a schedule that creates the previous day's partition each morning, and schedules that execute at the same time as the partition times).

The previous default partition selector was last_partition, which didn't always work as expected when using the default scheduler and has been removed in favor of the two helper partition selectors above.

For example, a schedule created from a daily partition set that fills in each partition the next day at 10AM would be created as follows:

partition_set = PartitionSetDefinition(
    name='hello_world_partition_set',
    pipeline_name='hello_world_pipeline',
    partition_fn= date_partition_range(
        start=datetime.datetime(2021, 1, 1),
        delta_range="days",
        timezone="US/Central",
    )
    run_config_fn_for_partition=my_run_config_fn,
)

schedule_definition = partition_set.create_schedule_definition(
    "daily_10am_schedule",
    "0 10 * * *",
    partition_selector=create_offset_partition_selector(lambda d: d.subtract(hours=10, days=1))
    execution_timezone="US/Central",
)

Renamed: Helm values

Following convention in the Helm docs, we now camel case all of our Helm values. To migrate to 0.10.0, you'll need to update your values.yaml with the following renames:

  • pipeline_runpipelineRun
  • dagster_homedagsterHome
  • env_secretsenvSecrets
  • env_config_mapsenvConfigMaps

Restructured: scheduler in Helm values

When specifying the Dagster instance scheduler, rather than using a boolean field to switch between the current options of K8sScheduler and DagsterDaemonScheduler, we now require the scheduler type to be explicitly defined under scheduler.type. If the user specified scheduler.type has required config, additional fields will need to be specified under scheduler.config.

scheduler.type and corresponding scheduler.config values are enforced via JSON Schema.

For example, if your Helm values previously were set like this to enable the DagsterDaemonScheduler: ​

scheduler:
  k8sEnabled: false

​ You should instead have: ​

scheduler:
  type: DagsterDaemonScheduler

Restructured: celery and k8sRunLauncher in Helm values

celery and k8sRunLauncher now live under runLauncher.config.celeryK8sRunLauncher and runLauncher.config.k8sRunLauncher respectively. Now, to enable celery, runLauncher.type must equal CeleryK8sRunLauncher. To enable the vanilla K8s run launcher, runLauncher.type must equal K8sRunLauncher.

runLauncher.type and corresponding runLauncher.config values are enforced via JSON Schema.

For example, if your Helm values previously were set like this to enable the K8sRunLauncher: ​

celery:
  enabled: false

k8sRunLauncher:
  enabled: true
  jobNamespace: ~
  loadInclusterConfig: true
  kubeconfigFile: ~
  envConfigMaps: []
  envSecrets: []

​ You should instead have: ​

runLauncher:
  type: K8sRunLauncher
  config:
    k8sRunLauncher:
      jobNamespace: ~
      loadInclusterConfig: true
      kubeconfigFile: ~
      envConfigMaps: []
      envSecrets: []

New Helm defaults

By default, userDeployments is enabled and the runLauncher is set to the K8sRunLauncher. Along with the latter change, all message brokers (e.g. rabbitmq and redis) are now disabled by default.

If you were using the CeleryK8sRunLauncher, one of rabbitmq or redis must now be explicitly enabled in your Helm values.

Migrating to 0.9.0

Removal: config argument

We have removed the config argument to the ConfigMapping, @composite_solid, @solid, SolidDefinition, @executor, ExecutorDefinition, @logger, LoggerDefinition, @resource, and ResourceDefinition APIs, which we deprecated in 0.8.0, in favor of config_schema, as described here.

Migrating to 0.8.8

Deprecation: Materialization

We deprecated the Materialization event type in favor of the new AssetMaterialization event type, which requires the asset_key parameter. Solids yielding Materialization events will continue to work as before, though the Materialization event will be removed in a future release.

Deprecation: system_storage_defs

We are starting to deprecate "system storages" - instead of pipelines having a system storage definition which creates an intermediate storage, pipelines now directly have an intermediate storage definition.

  • We have added an intermediate_storage_defs argument to ModeDefinition, which accepts a list of IntermediateStorageDefinitions, e.g. s3_plus_default_intermediate_storage_defs. As before, the default includes an in-memory intermediate and a local filesystem intermediate storage.
  • We have deprecated system_storage_defs argument to ModeDefinition in favor of intermediate_storage_defs. system_storage_defs will be removed in 0.10.0 at the earliest.
  • We have added an @intermediate_storage decorator, which makes it easy to define intermediate storages.
  • We have added s3_file_manager and local_file_manager resources to replace the file managers that previously lived inside system storages. The airline demo has been updated to include an example of how to do this: https://github.com/dagster-io/dagster/blob/0.8.8/examples/airline_demo/airline_demo/solids.py#L171.

For example, if your ModeDefinition looks like this:

from dagster_aws.s3 import s3_plus_default_storage_defs

ModeDefinition(system_storage_defs=s3_plus_default_storage_defs)

it is recommended to make it look like this:

from dagster_aws.s3 import s3_plus_default_intermediate_storage_defs

ModeDefinition(intermediate_storage_defs=s3_plus_default_intermediate_storage_defs)

Migrating to 0.8.7

Loading python modules from the working directory

Loading python modules reliant on the working directory being on the PYTHONPATH is no longer supported. The dagster and dagit CLI commands no longer add the working directory to the PYTHONPATH when resolving modules, which may break some imports. Explicitly installed python packages can be specified in workspaces using the python_package workspace yaml config option. The python_module config option is deprecated and will be removed in a future release.

Migrating to 0.8.6

dagster-celery

The dagster-celery module has been broken apart to manage dependencies more coherently. There are now three modules: dagster-celery, dagster-celery-k8s, and dagster-celery-docker.

Related to above, the dagster-celery worker start command now takes a required -A parameter which must point to the app.py file within the appropriate module. E.g if you are using the celery_k8s_job_executor then you must use the -A dagster_celery_k8s.app option when using the celery or dagster-celery cli tools. Similar for the celery_docker_executor: -A dagster_celery_docker.app must be used.

Deprecation: input_hydration_config and output_materialization_config

We renamed the input_hydration_config and output_materialization_config decorators to dagster_type_ and dagster_type_materializer respectively. We also renamed DagsterType's input_hydration_config and output_materialization_config arguments to loader and materializer respectively.

For example, if your dagster type definition looks like this:

from dagster import DagsterType, input_hydration_config, output_materialization_config


@input_hydration_config(config_schema=my_config_schema)
def my_loader(_context, config):
    '''some implementation'''


@output_materialization_config(config_schema=my_config_schema)
def my_materializer(_context, config):
    '''some implementation'''


MyType = DagsterType(
    input_hydration_config=my_loader,
    output_materialization_config=my_materializer,
    type_check_fn=my_type_check,
)

it is recommended to make it look like this:

from dagster import DagsterType, dagster_type_loader, dagster_type_materializer


@dagster_type_loader(config_schema=my_config_schema)
def my_loader(_context, config):
    '''some implementation'''


@dagster_type_materializer(config_schema=my_config_schema)
def my_materializer(_context, config):
    '''some implementation'''


MyType = DagsterType(
    loader=my_loader,
    materializer=my_materializer,
    type_check_fn=my_type_check,
)

Migrating to 0.8.5

Python 3.5

Python 3.5 is no longer under test.

Engine and ExecutorConfig -> Executor

Engine and ExecutorConfig have been deleted in favor of Executor. Instead of the @executor decorator decorating a function that returns an ExecutorConfig it should now decorate a function that returns an Executor.

Migrating to 0.8.3

Change: gcs_resource

Previously, the gcs_resource returned a GCSResource wrapper which had a single client property that returned a google.cloud.storage.client.Client. Now, the gcs_resource returns the client directly.

To update solids that use the gcp_resource, change:

context.resources.gcs.client

To:

context.resources.gcs

Migrating to 0.8.0

Repository loading

Dagit and other tools no longer load a single repository containing user definitions such as pipelines into the same process as the framework code. Instead, they load a "workspace" that can contain multiple repositories sourced from a variety of different external locations (e.g., Python modules and Python virtualenvs, with containers and source control repositories soon to come).

The repositories in a workspace are loaded into their own "user" processes distinct from the "host" framework process. Dagit and other tools now communicate with user code over an IPC mechanism.

As a consequence, the former repository.yaml and the associated -y/--repository-yaml CLI arguments are deprecated in favor of a new workspace.yaml file format and associated -w/--workspace-yaml arguments.

Steps to migrate

You should replace your repository.yaml files with workspace.yaml files, which can define a number of possible sources from which to load repositories.

load_from:
  - python_module:
      module_name: dagster_examples
      attribute: define_internal_dagit_repository
  - python_module: dagster_examples.intro_tutorial.repos
  - python_file: repos.py
  - python_environment:
      executable_path: "/path/to/venvs/dagster-dev-3.7.6/bin/python"
      target:
        python_module:
          module_name: dagster_examples
          location_name: dagster_examples
          attribute: define_internal_dagit_repository

Repository definition

The @scheduler and @repository_partitions decorators have been removed. In addition, users should prefer the new @repository decorator to instantiating RepositoryDefinition directly.

One consequence of this change is that PartitionSetDefinition names, including those defined by a PartitionScheduleDefinition, must now be unique within a single repository.

Steps to migrate

Previously you might have defined your pipelines, schedules, partition sets, and repositories in a python file such as the following:

@pipeline
def test():
    ...

@daily_schedule(
    pipeline_name='test',
    start_date=datetime.datetime(2020, 1, 1),
)
def daily_test_schedule(_):
    return {}

test_partition_set = PartitionSetDefinition(
    name="test",
    pipeline_name="test",
    partition_fn=lambda: ["test"],
    environment_dict_fn_for_partition=lambda _: {},
)

@schedules
def define_schedules():
    return [daily_test_schedule]

@repository_partitions
def define_partitions():
    return [test_partition_set]

def define_repository():
    return RepositoryDefinition('test', pipeline_defs=[test])

With a repository.yaml such as:

repository:
  file: repo.py
  fn: define_repository

scheduler:
  file: repo.py
  fn: define_schedules

partitions:
  file: repo.py
  fn: define_partitions

In 0.8.0, you'll write Python like:

@pipeline
def test_pipeline():
    ...

@daily_schedule(
    pipeline_name='test',
    start_date=datetime.datetime(2020, 1, 1),
)
def daily_test_schedule(_):
    return {}

test_partition_set = PartitionSetDefinition(
    name="test",
    pipeline_name="test",
    partition_fn=lambda: ["test"],
    run_config_fn_for_partition=lambda _: {},
)

@repository
def test_repository():
    return [test_pipeline, daily_test_schedule, test_partition_set]

Your workspace.yaml will look like:

load_from:
  - python_file: repo.py

If you have more than one repository defined in a single Python file, you'll want to instead load the repository using workspace.yaml like:

load_from:
  - python_file:
      relative_path: repo.py
      attribute: test_repository
  - python_file:
      relative_path: repo.py
      attribute: other_repository

Of course, the workspace.yaml also supports loading from a python_module, or with a specific Python interpreter from a python_environment.

Note that the @repository decorator also supports more sophisticated, lazily-loaded repositories. Consult the documentation for the decorator for more details.

Reloadable repositories

In 0.7.x, dagster attempted to elide the difference between a pipeline that was defined in memory and one that was loaded through machinery that used the ExecutionTargetHandle machinery. This resulted in opaque and hard-to-predict errors and unpleasant workarounds, for instance:

  • Pipeline execution in test using execute_pipeline would suddenly fail when a multiprocess executor was used.
  • Tests of pipelines with dagstermill solids had to resort to workarounds such as
    handle = handle_for_pipeline_cli_args(
        {'module_name': 'some_module.repository', 'fn_name': 'some_pipeline'}
    )
    pipeline = handle.build_pipeline_definition()
    result = execute_pipeline(pipeline, ...)

In 0.8.0, we've added the reconstructable helper to explicitly convert in-memory pipelines into reconstructable pipelines that can be passed between processes.

@pipeline(...)
def some_pipeline():
    ...

execute_pipeline(reconstructable(some_pipeline), {'execution': {'multiprocess': {}})

Pipelines must be defined in module scope in order for reconstructable to be used. Note that pipelines defined interactively, e.g., in the Python REPL, cannot be passed between processes.

Renaming environment_dict and removing RunConfig

In 0.8.0, we've renamed the common environment_dict parameter to many user-facing APIs to run_config, and we've dropped the previous run_config parameter. This change affects the execute_pipeline_iterator and execute_pipeline APIs, the PresetDefinition and ScheduleDefinition, and the execute_solid test API. Similarly, the environment_dict_fn, user_defined_environment_dict_fn_for_partition, and environment_dict_fn_for_partition parameters to ScheduleDefinition, PartitionSetDefinition, and PartitionScheduleDefinition have been renamed to run_config_fn, user_defined_run_config_fn_for_partition, and run_config_fn_for_partition respectively.

The previous run_config parameter has been removed, as has the backing RunConfig class. This change affects the execute_pipeline_iterator and execute_pipeline APIs, and the execute_solids_within_pipeline and execute_solid_within_pipeline test APIs. Instead, you should set the mode, preset, tags, solid_selection, and, in test, `raise_on_error parameters directly.

This change is intended to reduce ambiguity around the notion of a pipeline execution's "environment", since the config value passed as run_config is scoped to a single execution.

Deprecation: config argument

In 0.8.0, we've renamed the common config parameter to the user-facing definition APIs to config_schema. This is intended to reduce ambiguity between config values (provided at execution time) and their user-specified schemas (provided at definition time). This change affects the ConfigMapping, @composite_solid, @solid, SolidDefinition, @executor, ExecutorDefinition, @logger, LoggerDefinition, @resource, and ResourceDefinition APIs. In the CLI, dagster pipeline execute and dagster pipeline launch now take -c/--config instead of -e/--env.

Renaming solid_subset and enabling support for solid selection DSL in Python API

In 0.8.0, we've renamed the solid_subset/--solid-subset argument to solid_selection/--solid-selection throughout the Python API and CLI. This affects the dagster pipeline execute, dagster pipeline launch, and dagster pipeline backfill CLI commands, and the @schedule, @monthly_schedule, @weekly_schedule, @daily_schedule, @hourly_schedule, ScheduleDefinition, PresetDefinition, PartitionSetDefinition, PartitionScheduleDefinition, execute_pipeline, execute_pipeline_iterator, DagsterInstance.create_run_for_pipeline, DagsterInstance.create_run APIs.

In addition to the names of individual solids, the new solid_selection argument supports selection queries like *solid_name++ (i.e., solid_name, all of its ancestors, its immediate descendants, and their immediate descendants), previously supported only in Dagit views.

Removal of deprectated properties, methods, and arguments

  • The deprecated runtime_type property on InputDefinition and OutputDefinition has been removed. Use dagster_type instead.
  • The deprecated has_runtime_type, runtime_type_named, and all_runtime_types methods on PipelineDefinition have been removed. Use has_dagster_type, dagster_type_named, and all_dagster_types instead.
  • The deprecated all_runtime_types method on SolidDefinition and CompositeSolidDefinition has been removed. Use all_dagster_types instead.
  • The deprecated metadata argument to SolidDefinition and @solid has been removed. Use tags instead.
  • The use of is_optional throughout the codebase was deprecated in 0.7.x and has been removed. Use is_required instead.

Removal of Path config type

The built-in config type Path has been removed. Use String.

dagster-bash

This package has been renamed to dagster-shell. Thebash_command_solid and bash_script_solid solid factory functions have been renamed to create_shell_command_solid and create_shell_script_solid.

Dask config

The config schema for the dagster_dask.dask_executor has changed. The previous config should now be nested under the key local.

Spark solids

dagster_spark.SparkSolidDefinition has been removed - use create_spark_solid instead.

Migrating to 0.7.0

The 0.7.0 release contains a number of breaking API changes. While listed in the changelog, this document goes into more detail about how to resolve the change easily. Most of the eliminated or changed APIs can be adjusted to with relatively straightforward changes.

The easiest way to use this guide is to search for associated error text.

Dagster Types

There have been substantial changes to the core dagster type APIs.

Error:

ImportError: cannot import name 'dagster_type' from 'dagster'

Fix:

Use usable_as_dagster_type instead. If dynamically generating types, construct using DagsterType instead.

Error:

ImportError: cannot import name 'as_dagster_type' from 'dagster'

Fix:

Use make_python_type_usable_as_dagster_type instead.

Error:

dagster.core.errors.DagsterInvalidDefinitionError: type_check_fn argument type "BadType" must take 2 arguments, received 1

Fix:

Add a context argument (named _, _context, context, or context_) as the first argument of the type_check_fn. The second argument is the value being type-checked.

Further Information:

We have eliminated the @dagster_type and as_dagster_type APIs, which previously were promoted as our primary type creation API. This API automatically created a mapping between a Python type and a Dagster Type. While convenient, this ended up causing unpredictable behavior based on import order, as well as being wholly incompatible with dynamically created Dagster types.

Our core type creation API is now the DagsterType class. It creates a Dagster type (which is just an instance of DagsterType) that can be passed to InputDefinition and OutputDefinition.

The functionality of @dagster_type is preserved, but under a different name: usable_as_dagster_type. This decorator signifies that the author wants a bare Python type to be usable in contexts that expect dagster types, such as an InputDefinition or OutputDefinition.

Any user that had been programmatically creating dagster types and was forced to decorate classes in local scope using @dagster_type and return that class should instead just create a DagsterType directly.

as_dagster_type has replaced by make_python_type_usable_as_dagster_type. The semantics of as_dagster_type did not indicate what is was actually doing very well. This function is meant to take an existing type -- often from a library that one doesn't control -- and make that type usable as a dagster type, the second argument.

The type_check_fn argument has been renamed from type_check and now takes two arguments instead of one. The first argument is a instance of TypeCheckContext; the second argument is the value being checked. This allows the type check to have access to resources.

Config System

The config APIs have been renamed to have no collisions with names in neither python's typing API nor the dagster type system. Here are some example errors:

Error:

dagster.core.errors.DagsterInvariantViolationError: Cannot resolve Dagster Type Optional.Int to a config type. Repr of type: <dagster.core.types.dagster_type.OptionalType object at 0x102bb2a50>

Fix:

Use Noneable of Optional.

Error:

TypeError: 'DagsterDictApi' object is not callable

Fix:

Pass a raw python dictionary instead of Dict.

config=Dict({'foo': str}) becomes config={'foo': str}

Error:

ImportError: cannot import name 'PermissiveDict' from 'dagster'

Fix:

Use Permissive instead.

Error:

dagster.core.errors.DagsterInvariantViolationError: Cannot use List in the context of config. Please use a python list (e.g. [int]) or dagster.Array (e.g. Array(int)) instead.

Fix:

This happens when a properly constructed List is used within config. Use Array instead.

Error:

dagster.core.errors.DagsterInvalidDefinitionError: Invalid type: dagster_type must be DagsterType, a python scalar, or a python type that has been marked usable as a dagster type via @usable_dagster_type or make_python_type_usable_as_dagster_type: got <dagster.config.config_type.Noneable object at 0x1029c8a10>.

Fix:

This happens when a List takes an invalid argument and is never constructed. The error could be much better. This is what happens a config type (in this case Noneable) is passed to a List. The fix is to use either Array or to use a bare list with a single element, which is a config type.

Required Resources

Any solid, type, or configuration function that accesses a resource off of a context object must declare that resource key with a required_resource_key argument.

Error:

DagsterUnknownResourceError: Unknown resource <resource_name>. Specify <resource_name> as a required resource on the compute / config function that accessed it.

Fix:

Find any references to context.resources.<resource_name>, and ensure that the enclosing solid definition, type definition, or config function has the resource key specified in its required_resource_key argument.

Further information:

When only a subset of solids are being executed in a given process, we only need to initialize resources that will be used by that subset of solids. In order to improve the performance of pipeline execution, we need each solid and type to explicitly declare its required resources.

As a result, we should see improved performance for pipeline subset execution, multiprocess execution, and retry execution.

RunConfig Removed

Error:

AttributeError: 'ComputeExecutionContext' object has no attribute 'run_config'

Fix:

Replace all references to context.run_config with context.pipeline_run. The run_config field on the pipeline execution context has been removed and replaced with pipeline_run, a PipelineRun instance. Along with the fields previously on RunConfig, this also includes the pipeline run status.

Scheduler

Scheduler configuration has been moved to the dagster.yaml. After upgrading, the previous schedule history is no longer compatible with the new storage.

Make sure you delete your existing $DAGSTER_HOME/schedules directory, then run:

dagster schedule wipe && dagster schedule up

Error:

TypeError: schedules() got an unexpected keyword argument 'scheduler'

Fix:

The @schedules decorator no longer takes a scheduler argument. Remove the argument and instead configure the scheduler on the instance.

Instead of:

@schedules(scheduler=SystemCronScheduler)
def define_schedules():
    ...

Remove the scheduler argument:

@schedules
def define_schedules():
    ...

Configure the scheduler on your instance by adding the following to $DAGSTER_HOME/dagster.yaml:

scheduler:
    module: dagster_cron.cron_scheduler
    class: SystemCronScheduler

Error:

TypeError: <lambda>() takes 0 positional arguments but 1 was given"

Stack Trace:

    File ".../dagster/python_modules/dagster/dagster/core/definitions/schedule.py", line 171, in should_execute
        return self._should_execute(context)

Fix:

The should_execute and environment_dict_fn argument to ScheduleDefinition now has a required first argument context, representing the ScheduleExecutionContext.