Powered by 🤗 Transformers, Optimum & flash-attn
TL;DR - Transcribe 150 minutes (2.5 hours) of audio in less than 98 seconds - with OpenAI's Whisper Large v3. Blazingly fast transcription is now a reality!⚡️
Not convinced? Here are some benchmarks we ran on a free Google Colab T4 GPU! 👇
Optimisation type | Time to Transcribe (150 mins of Audio) |
---|---|
Transformers (fp32 ) |
~31 (31 min 1 sec) |
Transformers (fp16 + batching [24] + bettertransformer ) |
~5 (5 min 2 sec) |
Transformers (fp16 + batching [24] + Flash Attention 2 ) |
~2 (1 min 38 sec) |
distil-whisper (fp16 + batching [24] + bettertransformer ) |
~3 (3 min 16 sec) |
distil-whisper (fp16 + batching [24] + Flash Attention 2 ) |
~1 (1 min 18 sec) |
Faster Whisper (fp16 + beam_size [1] ) |
~9.23 (9 min 23 sec) |
Faster Whisper (8-bit + beam_size [1] ) |
~8 (8 min 15 sec) |
We've added a CLI to enable fast transcriptions. Here's how you can use it:
Install insanely-fast-whisper
with pipx
:
pipx install insanely-fast-whisper
Run inference from any path on your computer:
insanely-fast-whisper --file-name <filename or URL>
🔥 You can run Whisper-large-v3 w/ Flash Attention 2 from this CLI too:
insanely-fast-whisper --file-name <filename or URL> --flash True
🌟 You can run distil-whisper directly from this CLI too:
insanely-fast-whisper --model-name distil-whisper/large-v2 --file-name <filename or URL>
Don't want to install insanely-fast-whisper
? Just use pipx run
:
pipx run insanely-fast-whisper --file-name <filename or URL>
Note: The CLI is opinionated and currently only works for Nvidia GPUs. Make sure to check out the defaults and the list of options you can play around with to maximise your transcription throughput. Run insanely-fast-whisper --help
or pipx run insanely-fast-whisper --help
to get all the CLI arguments and defaults.
For older GPUs, all you need to run is:
import torch
from transformers import pipeline
pipe = pipeline("automatic-speech-recognition",
"openai/whisper-large-v2",
torch_dtype=torch.float16,
device="cuda:0")
pipe.model = pipe.model.to_bettertransformer()
outputs = pipe("<FILE_NAME>",
chunk_length_s=30,
batch_size=24,
return_timestamps=True)
outputs["text"]
For newer (A10, A100, H100s), use Flash Attention:
import torch
from transformers import pipeline
pipe = pipeline("automatic-speech-recognition",
"openai/whisper-large-v2",
torch_dtype=torch.float16,
model_kwargs={"use_flash_attention_2": True},
device="cuda:0")
outputs = pipe("<FILE_NAME>",
chunk_length_s=30,
batch_size=24,
return_timestamps=True)
outputs["text"]
- Add a light CLI script
- Deployment script with Inference API
@ochen1 created a brilliant MVP for a CLI here: https://github.com/ochen1/insanely-fast-whisper-cli (Try it out now!)