Skip to content

Latest commit

 

History

History
393 lines (368 loc) · 13.4 KB

cryptoanalysis.md

File metadata and controls

393 lines (368 loc) · 13.4 KB

Frequency analysis

Frequency distribution generator

This can be used to find out the frequency of letters in a language. freq_gen can be used to generate frequency distributions for a given test and will output arrays that can be included in other programs. For example we can use it to find the frequency of letter in the book The Great Gatsby:

$ ./out/freq_gen gatsby.txt 
Total lowercase letters: 214088
Total uppercase letters: 7710
Lower case:
double lowercase[] = {
  0.083055, // a 
  0.015013, // b 
  0.023163, // c 
  0.047177, // d 
  0.124911, // e 
  0.020688, // f 
  0.022551, // g 
  0.059508, // h 
  0.063166, // i 
  0.001355, // j 
  0.009632, // k 
  0.040138, // l 
  0.025863, // m 
  0.070247, // n 
  0.079617, // o 
  0.015517, // p 
  0.000775, // q 
  0.058200, // r 
  0.060942, // s 
  0.091374, // t 
  0.029404, // u 
  0.009272, // v 
  0.024397, // w 
  0.001471, // x 
  0.021874, // y 
  0.000691, // z 
};
double uppercase[] = {
  0.051492, // A 
  0.033982, // B 
  0.026719, // C 
  0.044747, // D 
  0.031518, // E 
  0.020623, // F 
  0.064202, // G 
  0.057977, // H 
  0.228534, // I 
  0.019196, // J 
  0.005447, // K 
  0.019196, // L 
  0.043320, // M 
  0.028016, // N 
  0.025681, // O 
  0.022438, // P 
  0.000649, // Q 
  0.014267, // R 
  0.052010, // S 
  0.102853, // T 
  0.007912, // U 
  0.004799, // V 
  0.066407, // W 
  0.000519, // X 
  0.027367, // Y 
  0.000130, // Z 
};

Index of Coincidence

The goal here is to have a method of identifying if a cipher used a mono or poly alphabet. While this is can be done manually by inspecting a graph of letter frequency distributions we want to be able to do this mathematically as well.

Lets say that we have the following frequency distributions taken from a text of 1000 characters:

Mono                 Poly
A 73                 A 38
B  9                 B 39
C 30                 C 38
D 44                 D 39
...                  ...

Notice that the polyalphabetic distribution is smooth and the monoalphabetic distribution is rough. Picking a single letter from either distribution will give us a letter with 100% chance which may seem obvious and that does not provide and information as to if the cipher was using a mono or poly alphabet. But what about picking too of the same letters?
For mono:

            73     72
Both A's = ---- * --- = 0,00526
           1000   999

For poly:

            38     38
Both A's = ---- * --- = 0,00144
           1000   999

If we do this for all letters and sum the up:

 Z     i    i-1
 ∑ = ---- * --------
i=A  1000   1000 - 1

Poly: 0,038
Mono: 0,066

So 0,038 is the probability of picking 2 A's or B's or C's, etc, from a poly. distribution.

When I first saw this I was surpised and I thought it would be the other way around. There is an example of using coin tosses that might help clarify this: Fair coin (even distribution, poly):

P(H): 0,5                     P=Probability
P(T): 0,5                     H=Head
                              T=Tail

P(H or T) = P(H) + P(T) = 0,5 + 0,5 = 1

P(2H or 2T) = P(2H) + P(2T)
            = P(0.5 * 0.5) + P(0,5 * 0,5)
            = P(0.25) + P(0,25)
            = 0,5

Unfair coid (Uneven/rough distribution, mono)

P(H): 0,7                     P=Probability
P(T): 0,3                     H=Head
                              T=Tail

P(H or T) = P(H) + P(T) = 0,7 + 0,3 = 1

P(2H or 2T) = P(2H) + P(2T)
            = P(0.7 * 0.7) + P(0,3 * 0,3)
            = P(0.49) + P(0,09)
            = 0,58

So we can use the index of coincedence on a ciphertext and if the index is around 0,04 the we know that we are dealing with a polyalphabetic cipher, and if it is around 0.06 it is a monoalphabetic cipher.

Breaking the Vigenere cipher

Recall that the Vigenere cipher uses a keyword instead of a single key like the Ceasar cipher.

There is a very nice and clear video which I've taken notes below so that I can understand and implement this.

To break this cipher we need to start with figuring out the length of this keyword.

Alphabet/number reference:

a  b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r  s  t  u  v  w  x  y  z
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Take the following example were we have only repeating plaintext values A and a keyword of ABC. Notice that the same plaintext letter can map to different ciphertext letters, which is not the case in the Ceasar cipher:

A A A A A A A A A A A A A A A A A
A B C A B C A B C A B C A B C A B
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
A B A A B C A B C A B C A B C A B

The frequency distribution for this is much more uniform, if we imagine a graph then there won't be any large spikes or low vallys.

We can group these into groups of letters that have been shifted by 0, 1, and two.

Now, we start by thinking about our plaintext as a number of positions where our english letter can go:

E = English language letter (standard frequency distibution)
    the actual letter any letter from a-z.
S = Shifted (non-standard frequency distribution)

                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   Plaintext:       |E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   Key:             |A|C|A|C|A|C|A|C|A|C|A|C|A|C|A|C|A|
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   Ciphertext:      |E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Now, we can create a vector of the standard probabilites, the following was generated by freq_gen.c:

double e[] = {
  0.077432, // a 
  0.014022, // b 
  0.026657, // c 
  0.049208, // d 
  0.134645, // e 
  0.025036, // f 
  0.017007, // g 
  0.057198, // h 
  0.062948, // i 
  0.001268, // j 
  0.005085, // k 
  0.037062, // l 
  0.030277, // m 
  0.071253, // n 
  0.073800, // o 
  0.017513, // p 
  0.000950, // q 
  0.061072, // r 
  0.061263, // s 
  0.087605, // t 
  0.030427, // u 
  0.011137, // v 
  0.021681, // w 
  0.001988, // x 
  0.022836, // y 
  0.000629, // z 
};

The probability that one of the E boxes above is an A is simply e[0], and the probability of B is e[1] etc. If we want to find the probablity of two E boxes both being a:

double prob = e[0] * e[0];

This would produce 0.005996.

And we can also ask what the probability of two of the boxes being the same, not just A and A, but any pair like B and B, C and C, etc.

  double dot_product = 0.0;
  for (int i = 0; i < freq_len; i++) {
    dot_product += e[i] * e[i];
  }
  printf("%f\n", dot_product);

This would produce 0.065956.

Now, if we create a second array with the frequency distributions for the shifted boxes we will have values in different places. In our example we are shifting only by C which is 3

double s[] = {
  0.001988, // x 
  0.022836, // y 
  0.000629, // z 
  0.077432, // a 
  0.014022, // b 
  0.026657, // c 
  0.049208, // d 
  0.134645, // e 
  0.025036, // f 
  0.017007, // g 
  0.057198, // h 
  0.062948, // i 
  0.001268, // j 
  0.005085, // k 
  0.037062, // l 
  0.030277, // m 
  0.071253, // n 
  0.073800, // o 
  0.017513, // p 
  0.000950, // q 
  0.061072, // r 
  0.061263, // s 
  0.087605, // t 
  0.030427, // u 
  0.011137, // v 
  0.021681, // w 
};

But notice that we get the same result for our the dot product as the order does not matter.

But how about comparing a[i] to s[i]?

  double combined_dot_product = 0.0;
  for (int i = 0; i < freq_len; i++) {
    combined_dot_product += sampled_freq[i] * s[i];
  }
  printf("%f\n", combined_dot_product);

This will produce 0.033782. To summaries the outputs from above:

standard_freq dot_product: 0.065956
shifted freq dot_product: 0.065956
sampled_freq dot shifted_freq: 0.033782

When we take dot products with the same vector, v . v, the we get a larger value than when do it with a shifted vector. With that knowledge lets take a copy of the ciphertext from above and shift it one position:

                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   Ciphertext:      |E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   Copy:            |E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                         dot product larger

                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   Ciphertext:      |E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   Shifted by one:    |E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|
                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                         dot product smaller

                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   Ciphertext:      |E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|
                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   Shifted by two:      |E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|S|E|
                        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                         dot product larger

If we now take the dot product we would expect to get a smaller value compared to when we compared the aligned ciphertext copy. In this case the key was only one character but if it was multiple characters we would still see the same behaviour namely that when we have an alignment the dot product will be larger. If we could the number of shifts between these the larger dot product that should give us the key length.

$ ./out/vigenere_encrypt "some where over the rainbow, sun shine and cares are gone and everyone is happy" bajja
keyword: bajja
ciphertext: tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh

So, we now take the ciphertext and take a copy. This is then shifted on position to the right and we then cound the number of matches we find:

tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh
1tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpy
                                                       ↑         1
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh
2 tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbp
                  ↑                                ↑             2
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh
2  tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhb
                                      ↑           ↑              2
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh
4   tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbh
                         ↑                                       1
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh
5    tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerb
        ↑  ↑↑                                           ↑        4
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh
6     tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooer
          ↑                                         ↑      ↑     3
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh
7      tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooe
                                            ↑ ↑         ↑        3
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh
8       tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahoo
         ↑                    ↑     ↑↑           ↑               5  
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh         
9        tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweaho         
                                                                 0       
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh    <---+
10        tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweah        |
                            ↑↑                     ↑           ↑ 4      |
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh        |
11         tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmewea        |
                   ↑                                             1      |
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh        |
12          tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmewe        |
                     ↑      ↑      ↑                             3      |
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh        |
13           tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmew        |
                                                    ↑            1      |
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh        |
14            tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawme        |
                                  ↑     ↑                        2      |
tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawmeweahooerbhbpyh        |
15             tovnwieanoweachfrjrncofbuosqrnfawmcbrnbasepxnfawm        |
                              ↑             ↑↑↑↑↑                6 <----+