From 4e568f28b36901ebc01dc52359e94f6718a41fbf Mon Sep 17 00:00:00 2001 From: Dan Siwiec Date: Wed, 30 Dec 2020 14:12:20 -0800 Subject: [PATCH] Update Inference Pipeline with Scikit-learn and Linear Learner notebook for SageMaker v2 API. Addresses #1891 --- ...with Scikit-learn and Linear Learner.ipynb | 31 +++++++++---------- 1 file changed, 15 insertions(+), 16 deletions(-) diff --git a/sagemaker-python-sdk/scikit_learn_inference_pipeline/Inference Pipeline with Scikit-learn and Linear Learner.ipynb b/sagemaker-python-sdk/scikit_learn_inference_pipeline/Inference Pipeline with Scikit-learn and Linear Learner.ipynb index ceebb44a9b..0d6160e363 100644 --- a/sagemaker-python-sdk/scikit_learn_inference_pipeline/Inference Pipeline with Scikit-learn and Linear Learner.ipynb +++ b/sagemaker-python-sdk/scikit_learn_inference_pipeline/Inference Pipeline with Scikit-learn and Linear Learner.ipynb @@ -333,7 +333,7 @@ " entry_point=script_path,\n", " role=role,\n", " framework_version=FRAMEWORK_VERSION,\n", - " train_instance_type=\"ml.c4.xlarge\",\n", + " instance_type=\"ml.c4.xlarge\",\n", " sagemaker_session=sagemaker_session)\n" ] }, @@ -398,8 +398,8 @@ "outputs": [], "source": [ "import boto3\n", - "from sagemaker.amazon.amazon_estimator import get_image_uri\n", - "ll_image = get_image_uri(boto3.Session().region_name, 'linear-learner')" + "from sagemaker.image_uris import retrieve\n", + "ll_image = retrieve('linear-learner', boto3.Session().region_name)" ] }, { @@ -414,17 +414,17 @@ "ll_estimator = sagemaker.estimator.Estimator(\n", " ll_image,\n", " role, \n", - " train_instance_count=1, \n", - " train_instance_type='ml.m4.2xlarge',\n", - " train_volume_size = 20,\n", - " train_max_run = 3600,\n", + " instance_count=1, \n", + " instance_type='ml.m4.2xlarge',\n", + " volume_size = 20,\n", + " max_run = 3600,\n", " input_mode= 'File',\n", " output_path=s3_ll_output_location,\n", " sagemaker_session=sagemaker_session)\n", "\n", "ll_estimator.set_hyperparameters(feature_dim=10, predictor_type='regressor', mini_batch_size=32)\n", "\n", - "ll_train_data = sagemaker.session.s3_input(\n", + "ll_train_data = sagemaker.inputs.TrainingInput(\n", " preprocessed_train, \n", " distribution='FullyReplicated',\n", " content_type='text/csv', \n", @@ -494,16 +494,15 @@ "metadata": {}, "outputs": [], "source": [ - "from sagemaker.predictor import json_serializer, csv_serializer, json_deserializer, RealTimePredictor\n", - "from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON\n", + "from sagemaker.predictor import Predictor\n", + "from sagemaker.serializers import CSVSerializer\n", + "\n", "payload = 'M, 0.44, 0.365, 0.125, 0.516, 0.2155, 0.114, 0.155'\n", "actual_rings = 10\n", - "predictor = RealTimePredictor(\n", - " endpoint=endpoint_name,\n", + "predictor = Predictor(\n", + " endpoint_name=endpoint_name,\n", " sagemaker_session=sagemaker_session,\n", - " serializer=csv_serializer,\n", - " content_type=CONTENT_TYPE_CSV,\n", - " accept=CONTENT_TYPE_JSON)\n", + " serializer=CSVSerializer())\n", "\n", "print(predictor.predict(payload))" ] @@ -544,7 +543,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.10" } }, "nbformat": 4,