forked from patrickvonplaten/TensorFlowTTS
-
Notifications
You must be signed in to change notification settings - Fork 3
/
base_trainer.py
executable file
·1010 lines (837 loc) · 35.7 KB
/
base_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Based Trainer."""
import abc
import logging
import os
import tensorflow as tf
from tqdm import tqdm
from tensorflow_tts.optimizers import GradientAccumulator
from tensorflow_tts.utils import utils
class BasedTrainer(metaclass=abc.ABCMeta):
"""Customized trainer module for all models."""
def __init__(self, steps, epochs, config):
self.steps = steps
self.epochs = epochs
self.config = config
self.finish_train = False
self.writer = tf.summary.create_file_writer(config["outdir"])
self.train_data_loader = None
self.eval_data_loader = None
self.train_metrics = None
self.eval_metrics = None
self.list_metrics_name = None
def init_train_eval_metrics(self, list_metrics_name):
"""Init train and eval metrics to save it to tensorboard."""
self.train_metrics = {}
self.eval_metrics = {}
for name in list_metrics_name:
self.train_metrics.update(
{name: tf.keras.metrics.Mean(name="train_" + name, dtype=tf.float32)}
)
self.eval_metrics.update(
{name: tf.keras.metrics.Mean(name="eval_" + name, dtype=tf.float32)}
)
def reset_states_train(self):
"""Reset train metrics after save it to tensorboard."""
for metric in self.train_metrics.keys():
self.train_metrics[metric].reset_states()
def reset_states_eval(self):
"""Reset eval metrics after save it to tensorboard."""
for metric in self.eval_metrics.keys():
self.eval_metrics[metric].reset_states()
def update_train_metrics(self, dict_metrics_losses):
for name, value in dict_metrics_losses.items():
self.train_metrics[name].update_state(value)
def update_eval_metrics(self, dict_metrics_losses):
for name, value in dict_metrics_losses.items():
self.eval_metrics[name].update_state(value)
def set_train_data_loader(self, train_dataset):
"""Set train data loader (MUST)."""
self.train_data_loader = train_dataset
def get_train_data_loader(self):
"""Get train data loader."""
return self.train_data_loader
def set_eval_data_loader(self, eval_dataset):
"""Set eval data loader (MUST)."""
self.eval_data_loader = eval_dataset
def get_eval_data_loader(self):
"""Get eval data loader."""
return self.eval_data_loader
@abc.abstractmethod
def compile(self):
pass
@abc.abstractmethod
def create_checkpoint_manager(self, saved_path=None, max_to_keep=10):
"""Create checkpoint management."""
pass
def run(self):
"""Run training."""
self.tqdm = tqdm(
initial=self.steps, total=self.config["train_max_steps"], desc="[train]"
)
while True:
self._train_epoch()
if self.finish_train:
break
self.tqdm.close()
logging.info("Finish training.")
@abc.abstractmethod
def save_checkpoint(self):
"""Save checkpoint."""
pass
@abc.abstractmethod
def load_checkpoint(self, pretrained_path):
"""Load checkpoint."""
pass
def _train_epoch(self):
"""Train model one epoch."""
for train_steps_per_epoch, batch in enumerate(self.train_data_loader, 1):
# one step training
self._train_step(batch)
# check interval
self._check_log_interval()
self._check_eval_interval()
self._check_save_interval()
# check wheter training is finished
if self.finish_train:
return
# update
self.epochs += 1
self.train_steps_per_epoch = train_steps_per_epoch
logging.info(
f"(Steps: {self.steps}) Finished {self.epochs} epoch training "
f"({self.train_steps_per_epoch} steps per epoch)."
)
@abc.abstractmethod
def _eval_epoch(self):
"""One epoch evaluation."""
pass
@abc.abstractmethod
def _train_step(self, batch):
"""One step training."""
pass
@abc.abstractmethod
def _check_log_interval(self):
"""Save log interval."""
pass
@abc.abstractmethod
def fit(self):
pass
def _check_eval_interval(self):
"""Evaluation interval step."""
if self.steps % self.config["eval_interval_steps"] == 0:
self._eval_epoch()
def _check_save_interval(self):
"""Save interval checkpoint."""
if self.steps % self.config["save_interval_steps"] == 0:
self.save_checkpoint()
logging.info(f"Successfully saved checkpoint @ {self.steps} steps.")
def generate_and_save_intermediate_result(self, batch):
"""Generate and save intermediate result."""
pass
def _write_to_tensorboard(self, list_metrics, stage="train"):
"""Write variables to tensorboard."""
with self.writer.as_default():
for key, value in list_metrics.items():
tf.summary.scalar(stage + "/" + key, value.result(), step=self.steps)
self.writer.flush()
class GanBasedTrainer(BasedTrainer):
"""Customized trainer module for GAN TTS training (MelGAN, GAN-TTS, ParallelWaveGAN)."""
def __init__(
self,
steps,
epochs,
config,
strategy,
is_generator_mixed_precision=False,
is_discriminator_mixed_precision=False,
):
"""Initialize trainer.
Args:
steps (int): Initial global steps.
epochs (int): Initial global epochs.
config (dict): Config dict loaded from yaml format configuration file.
"""
super().__init__(steps, epochs, config)
self._is_generator_mixed_precision = is_generator_mixed_precision
self._is_discriminator_mixed_precision = is_discriminator_mixed_precision
self._strategy = strategy
self._already_apply_input_signature = False
self._generator_gradient_accumulator = GradientAccumulator()
self._discriminator_gradient_accumulator = GradientAccumulator()
self._generator_gradient_accumulator.reset()
self._discriminator_gradient_accumulator.reset()
def init_train_eval_metrics(self, list_metrics_name):
with self._strategy.scope():
super().init_train_eval_metrics(list_metrics_name)
def get_n_gpus(self):
return self._strategy.num_replicas_in_sync
def _get_train_element_signature(self):
return self.train_data_loader.element_spec
def _get_eval_element_signature(self):
return self.eval_data_loader.element_spec
def set_gen_model(self, generator_model):
"""Set generator class model (MUST)."""
self._generator = generator_model
def get_gen_model(self):
"""Get generator model."""
return self._generator
def set_dis_model(self, discriminator_model):
"""Set discriminator class model (MUST)."""
self._discriminator = discriminator_model
def get_dis_model(self):
"""Get discriminator model."""
return self._discriminator
def set_gen_optimizer(self, generator_optimizer):
"""Set generator optimizer (MUST)."""
self._gen_optimizer = generator_optimizer
if self._is_generator_mixed_precision:
self._gen_optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
self._gen_optimizer, "dynamic"
)
def get_gen_optimizer(self):
"""Get generator optimizer."""
return self._gen_optimizer
def set_dis_optimizer(self, discriminator_optimizer):
"""Set discriminator optimizer (MUST)."""
self._dis_optimizer = discriminator_optimizer
if self._is_discriminator_mixed_precision:
self._dis_optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
self._dis_optimizer, "dynamic"
)
def get_dis_optimizer(self):
"""Get discriminator optimizer."""
return self._dis_optimizer
def compile(self, gen_model, dis_model, gen_optimizer, dis_optimizer):
self.set_gen_model(gen_model)
self.set_dis_model(dis_model)
self.set_gen_optimizer(gen_optimizer)
self.set_dis_optimizer(dis_optimizer)
def _train_step(self, batch):
if self._already_apply_input_signature is False:
train_element_signature = self._get_train_element_signature()
eval_element_signature = self._get_eval_element_signature()
self.one_step_forward = tf.function(
self._one_step_forward, input_signature=[train_element_signature]
)
self.one_step_evaluate = tf.function(
self._one_step_evaluate, input_signature=[eval_element_signature]
)
self.one_step_predict = tf.function(
self._one_step_predict, input_signature=[eval_element_signature]
)
self._already_apply_input_signature = True
# run one_step_forward
self.one_step_forward(batch)
# update counts
self.steps += 1
self.tqdm.update(1)
self._check_train_finish()
def _one_step_forward(self, batch):
per_replica_losses = self._strategy.run(
self._one_step_forward_per_replica, args=(batch,)
)
return self._strategy.reduce(
tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None
)
@abc.abstractmethod
def compute_per_example_generator_losses(self, batch, outputs):
"""Compute per example generator losses and return dict_metrics_losses
Note that all element of the loss MUST has a shape [batch_size] and
the keys of dict_metrics_losses MUST be in self.list_metrics_name.
Args:
batch: dictionary batch input return from dataloader
outputs: outputs of the model
Returns:
per_example_losses: per example losses for each GPU, shape [B]
dict_metrics_losses: dictionary loss.
"""
per_example_losses = 0.0
dict_metrics_losses = {}
return per_example_losses, dict_metrics_losses
@abc.abstractmethod
def compute_per_example_discriminator_losses(self, batch, gen_outputs):
"""Compute per example discriminator losses and return dict_metrics_losses
Note that all element of the loss MUST has a shape [batch_size] and
the keys of dict_metrics_losses MUST be in self.list_metrics_name.
Args:
batch: dictionary batch input return from dataloader
outputs: outputs of the model
Returns:
per_example_losses: per example losses for each GPU, shape [B]
dict_metrics_losses: dictionary loss.
"""
per_example_losses = 0.0
dict_metrics_losses = {}
return per_example_losses, dict_metrics_losses
def _calculate_generator_gradient_per_batch(self, batch):
outputs = self._generator(**batch, training=True)
(
per_example_losses,
dict_metrics_losses,
) = self.compute_per_example_generator_losses(batch, outputs)
per_replica_gen_losses = tf.nn.compute_average_loss(
per_example_losses,
global_batch_size=self.config["batch_size"]
* self.get_n_gpus()
* self.config["gradient_accumulation_steps"],
)
if self._is_generator_mixed_precision:
scaled_per_replica_gen_losses = self._gen_optimizer.get_scaled_loss(
per_replica_gen_losses
)
if self._is_generator_mixed_precision:
scaled_gradients = tf.gradients(
scaled_per_replica_gen_losses, self._generator.trainable_variables
)
gradients = self._gen_optimizer.get_unscaled_gradients(scaled_gradients)
else:
gradients = tf.gradients(
per_replica_gen_losses, self._generator.trainable_variables
)
# gradient accumulate for generator here
if self.config["gradient_accumulation_steps"] > 1:
self._generator_gradient_accumulator(gradients)
# accumulate loss into metrics
self.update_train_metrics(dict_metrics_losses)
if self.config["gradient_accumulation_steps"] == 1:
return gradients, per_replica_gen_losses
else:
return per_replica_gen_losses
def _calculate_discriminator_gradient_per_batch(self, batch):
(
per_example_losses,
dict_metrics_losses,
) = self.compute_per_example_discriminator_losses(
batch, self._generator(**batch, training=True)
)
per_replica_dis_losses = tf.nn.compute_average_loss(
per_example_losses,
global_batch_size=self.config["batch_size"]
* self.get_n_gpus()
* self.config["gradient_accumulation_steps"],
)
if self._is_discriminator_mixed_precision:
scaled_per_replica_dis_losses = self._dis_optimizer.get_scaled_loss(
per_replica_dis_losses
)
if self._is_discriminator_mixed_precision:
scaled_gradients = tf.gradients(
scaled_per_replica_dis_losses,
self._discriminator.trainable_variables,
)
gradients = self._dis_optimizer.get_unscaled_gradients(scaled_gradients)
else:
gradients = tf.gradients(
per_replica_dis_losses, self._discriminator.trainable_variables
)
# accumulate loss into metrics
self.update_train_metrics(dict_metrics_losses)
# gradient accumulate for discriminator here
if self.config["gradient_accumulation_steps"] > 1:
self._discriminator_gradient_accumulator(gradients)
if self.config["gradient_accumulation_steps"] == 1:
return gradients, per_replica_dis_losses
else:
return per_replica_dis_losses
def _one_step_forward_per_replica(self, batch):
per_replica_gen_losses = 0.0
per_replica_dis_losses = 0.0
if self.config["gradient_accumulation_steps"] == 1:
(
gradients,
per_replica_gen_losses,
) = self._calculate_generator_gradient_per_batch(batch)
self._gen_optimizer.apply_gradients(
zip(gradients, self._generator.trainable_variables)
)
else:
# gradient acummulation here.
for i in tf.range(self.config["gradient_accumulation_steps"]):
reduced_batch = {
k: v[
i
* self.config["batch_size"] : (i + 1)
* self.config["batch_size"]
]
for k, v in batch.items()
}
# run 1 step accumulate
reduced_batch_losses = self._calculate_generator_gradient_per_batch(
reduced_batch
)
# sum per_replica_losses
per_replica_gen_losses += reduced_batch_losses
gradients = self._generator_gradient_accumulator.gradients
self._gen_optimizer.apply_gradients(
zip(gradients, self._generator.trainable_variables)
)
self._generator_gradient_accumulator.reset()
# one step discriminator
# recompute y_hat after 1 step generator for discriminator training.
if self.steps >= self.config["discriminator_train_start_steps"]:
if self.config["gradient_accumulation_steps"] == 1:
(
gradients,
per_replica_dis_losses,
) = self._calculate_discriminator_gradient_per_batch(batch)
self._dis_optimizer.apply_gradients(
zip(gradients, self._discriminator.trainable_variables)
)
else:
# gradient acummulation here.
for i in tf.range(self.config["gradient_accumulation_steps"]):
reduced_batch = {
k: v[
i
* self.config["batch_size"] : (i + 1)
* self.config["batch_size"]
]
for k, v in batch.items()
}
# run 1 step accumulate
reduced_batch_losses = (
self._calculate_discriminator_gradient_per_batch(reduced_batch)
)
# sum per_replica_losses
per_replica_dis_losses += reduced_batch_losses
gradients = self._discriminator_gradient_accumulator.gradients
self._dis_optimizer.apply_gradients(
zip(gradients, self._discriminator.trainable_variables)
)
self._discriminator_gradient_accumulator.reset()
return per_replica_gen_losses + per_replica_dis_losses
def _eval_epoch(self):
"""Evaluate model one epoch."""
logging.info(f"(Steps: {self.steps}) Start evaluation.")
# calculate loss for each batch
for eval_steps_per_epoch, batch in enumerate(
tqdm(self.eval_data_loader, desc="[eval]"), 1
):
# eval one step
self.one_step_evaluate(batch)
if eval_steps_per_epoch <= self.config["num_save_intermediate_results"]:
# save intermedia
self.generate_and_save_intermediate_result(batch)
logging.info(
f"(Steps: {self.steps}) Finished evaluation "
f"({eval_steps_per_epoch} steps per epoch)."
)
# average loss
for key in self.eval_metrics.keys():
logging.info(
f"(Steps: {self.steps}) eval_{key} = {self.eval_metrics[key].result():.4f}."
)
# record
self._write_to_tensorboard(self.eval_metrics, stage="eval")
# reset
self.reset_states_eval()
def _one_step_evaluate_per_replica(self, batch):
################################################
# one step generator.
outputs = self._generator(**batch, training=False)
_, dict_metrics_losses = self.compute_per_example_generator_losses(
batch, outputs
)
# accumulate loss into metrics
self.update_eval_metrics(dict_metrics_losses)
################################################
# one step discriminator
if self.steps >= self.config["discriminator_train_start_steps"]:
_, dict_metrics_losses = self.compute_per_example_discriminator_losses(
batch, outputs
)
# accumulate loss into metrics
self.update_eval_metrics(dict_metrics_losses)
################################################
def _one_step_evaluate(self, batch):
self._strategy.run(self._one_step_evaluate_per_replica, args=(batch,))
def _one_step_predict_per_replica(self, batch):
outputs = self._generator(**batch, training=False)
return outputs
def _one_step_predict(self, batch):
outputs = self._strategy.run(self._one_step_predict_per_replica, args=(batch,))
return outputs
@abc.abstractmethod
def generate_and_save_intermediate_result(self, batch):
return
def create_checkpoint_manager(self, saved_path=None, max_to_keep=10):
"""Create checkpoint management."""
if saved_path is None:
saved_path = self.config["outdir"] + "/checkpoints/"
os.makedirs(saved_path, exist_ok=True)
self.saved_path = saved_path
self.ckpt = tf.train.Checkpoint(
steps=tf.Variable(1),
epochs=tf.Variable(1),
gen_optimizer=self.get_gen_optimizer(),
dis_optimizer=self.get_dis_optimizer(),
)
self.ckp_manager = tf.train.CheckpointManager(
self.ckpt, saved_path, max_to_keep=max_to_keep
)
def save_checkpoint(self):
"""Save checkpoint."""
self.ckpt.steps.assign(self.steps)
self.ckpt.epochs.assign(self.epochs)
self.ckp_manager.save(checkpoint_number=self.steps)
utils.save_weights(
self._generator,
self.saved_path + "generator-{}.h5".format(self.steps)
)
utils.save_weights(
self._discriminator,
self.saved_path + "discriminator-{}.h5".format(self.steps)
)
def load_checkpoint(self, pretrained_path):
"""Load checkpoint."""
self.ckpt.restore(pretrained_path)
self.steps = self.ckpt.steps.numpy()
self.epochs = self.ckpt.epochs.numpy()
self._gen_optimizer = self.ckpt.gen_optimizer
# re-assign iterations (global steps) for gen_optimizer.
self._gen_optimizer.iterations.assign(tf.cast(self.steps, tf.int64))
# re-assign iterations (global steps) for dis_optimizer.
try:
discriminator_train_start_steps = self.config[
"discriminator_train_start_steps"
]
discriminator_train_start_steps = tf.math.maximum(
0, self.steps - discriminator_train_start_steps
)
except Exception:
discriminator_train_start_steps = self.steps
self._dis_optimizer = self.ckpt.dis_optimizer
self._dis_optimizer.iterations.assign(
tf.cast(discriminator_train_start_steps, tf.int64)
)
# load weights.
utils.load_weights(
self._generator,
self.saved_path + "generator-{}.h5".format(self.steps)
)
utils.load_weights(
self._discriminator,
self.saved_path + "discriminator-{}.h5".format(self.steps)
)
def _check_train_finish(self):
"""Check training finished."""
if self.steps >= self.config["train_max_steps"]:
self.finish_train = True
if (
self.steps != 0
and self.steps == self.config["discriminator_train_start_steps"]
):
self.finish_train = True
logging.info(
f"Finished training only generator at {self.steps}steps, pls resume and continue training."
)
def _check_log_interval(self):
"""Log to tensorboard."""
if self.steps % self.config["log_interval_steps"] == 0:
for metric_name in self.list_metrics_name:
logging.info(
f"(Step: {self.steps}) train_{metric_name} = {self.train_metrics[metric_name].result():.4f}."
)
self._write_to_tensorboard(self.train_metrics, stage="train")
# reset
self.reset_states_train()
def fit(self, train_data_loader, valid_data_loader, saved_path, resume=None):
self.set_train_data_loader(train_data_loader)
self.set_eval_data_loader(valid_data_loader)
self.train_data_loader = self._strategy.experimental_distribute_dataset(
self.train_data_loader
)
self.eval_data_loader = self._strategy.experimental_distribute_dataset(
self.eval_data_loader
)
with self._strategy.scope():
self.create_checkpoint_manager(saved_path=saved_path, max_to_keep=10000)
if len(resume) > 1:
self.load_checkpoint(resume)
logging.info(f"Successfully resumed from {resume}.")
self.run()
class Seq2SeqBasedTrainer(BasedTrainer, metaclass=abc.ABCMeta):
"""Customized trainer module for Seq2Seq TTS training (Tacotron, FastSpeech)."""
def __init__(
self, steps, epochs, config, strategy, is_mixed_precision=False,
):
"""Initialize trainer.
Args:
steps (int): Initial global steps.
epochs (int): Initial global epochs.
config (dict): Config dict loaded from yaml format configuration file.
strategy (tf.distribute): Strategy for distributed training.
is_mixed_precision (bool): Use mixed_precision training or not.
"""
super().__init__(steps, epochs, config)
self._is_mixed_precision = is_mixed_precision
self._strategy = strategy
self._model = None
self._optimizer = None
self._trainable_variables = None
# check if we already apply input_signature for train_step.
self._already_apply_input_signature = False
# create gradient accumulator
self._gradient_accumulator = GradientAccumulator()
self._gradient_accumulator.reset()
def init_train_eval_metrics(self, list_metrics_name):
with self._strategy.scope():
super().init_train_eval_metrics(list_metrics_name)
def set_model(self, model):
"""Set generator class model (MUST)."""
self._model = model
def get_model(self):
"""Get generator model."""
return self._model
def set_optimizer(self, optimizer):
"""Set optimizer (MUST)."""
self._optimizer = optimizer
if self._is_mixed_precision:
self._optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
self._optimizer, "dynamic"
)
def get_optimizer(self):
"""Get optimizer."""
return self._optimizer
def get_n_gpus(self):
return self._strategy.num_replicas_in_sync
def compile(self, model, optimizer):
self.set_model(model)
self.set_optimizer(optimizer)
self._trainable_variables = self._train_vars()
def _train_vars(self):
if self.config["var_train_expr"]:
list_train_var = self.config["var_train_expr"].split("|")
return [
v
for v in self._model.trainable_variables
if self._check_string_exist(list_train_var, v.name)
]
return self._model.trainable_variables
def _check_string_exist(self, list_string, inp_string):
for string in list_string:
if string in inp_string:
return True
return False
def _get_train_element_signature(self):
return self.train_data_loader.element_spec
def _get_eval_element_signature(self):
return self.eval_data_loader.element_spec
def _train_step(self, batch):
if self._already_apply_input_signature is False:
train_element_signature = self._get_train_element_signature()
eval_element_signature = self._get_eval_element_signature()
self.one_step_forward = tf.function(
self._one_step_forward, input_signature=[train_element_signature]
)
self.one_step_evaluate = tf.function(
self._one_step_evaluate, input_signature=[eval_element_signature]
)
self.one_step_predict = tf.function(
self._one_step_predict, input_signature=[eval_element_signature]
)
self._already_apply_input_signature = True
# run one_step_forward
self.one_step_forward(batch)
# update counts
self.steps += 1
self.tqdm.update(1)
self._check_train_finish()
def _one_step_forward(self, batch):
per_replica_losses = self._strategy.run(
self._one_step_forward_per_replica, args=(batch,)
)
return self._strategy.reduce(
tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None
)
def _calculate_gradient_per_batch(self, batch):
outputs = self._model(**batch, training=True)
per_example_losses, dict_metrics_losses = self.compute_per_example_losses(
batch, outputs
)
per_replica_losses = tf.nn.compute_average_loss(
per_example_losses,
global_batch_size=self.config["batch_size"]
* self.get_n_gpus()
* self.config["gradient_accumulation_steps"],
)
if self._is_mixed_precision:
scaled_per_replica_losses = self._optimizer.get_scaled_loss(
per_replica_losses
)
if self._is_mixed_precision:
scaled_gradients = tf.gradients(
scaled_per_replica_losses, self._trainable_variables
)
gradients = self._optimizer.get_unscaled_gradients(scaled_gradients)
else:
gradients = tf.gradients(per_replica_losses, self._trainable_variables)
# gradient accumulate here
if self.config["gradient_accumulation_steps"] > 1:
self._gradient_accumulator(gradients)
# accumulate loss into metrics
self.update_train_metrics(dict_metrics_losses)
if self.config["gradient_accumulation_steps"] == 1:
return gradients, per_replica_losses
else:
return per_replica_losses
def _one_step_forward_per_replica(self, batch):
if self.config["gradient_accumulation_steps"] == 1:
gradients, per_replica_losses = self._calculate_gradient_per_batch(batch)
self._optimizer.apply_gradients(
zip(gradients, self._trainable_variables), 1.0
)
else:
# gradient acummulation here.
per_replica_losses = 0.0
for i in tf.range(self.config["gradient_accumulation_steps"]):
reduced_batch = {
k: v[
i
* self.config["batch_size"] : (i + 1)
* self.config["batch_size"]
]
for k, v in batch.items()
}
# run 1 step accumulate
reduced_batch_losses = self._calculate_gradient_per_batch(reduced_batch)
# sum per_replica_losses
per_replica_losses += reduced_batch_losses
gradients = self._gradient_accumulator.gradients
self._optimizer.apply_gradients(
zip(gradients, self._trainable_variables), 1.0
)
self._gradient_accumulator.reset()
return per_replica_losses
@abc.abstractmethod
def compute_per_example_losses(self, batch, outputs):
"""Compute per example losses and return dict_metrics_losses
Note that all element of the loss MUST has a shape [batch_size] and
the keys of dict_metrics_losses MUST be in self.list_metrics_name.
Args:
batch: dictionary batch input return from dataloader
outputs: outputs of the model
Returns:
per_example_losses: per example losses for each GPU, shape [B]
dict_metrics_losses: dictionary loss.
"""
per_example_losses = 0.0
dict_metrics_losses = {}
return per_example_losses, dict_metrics_losses
def _eval_epoch(self):
"""Evaluate model one epoch."""
logging.info(f"(Steps: {self.steps}) Start evaluation.")
# calculate loss for each batch
for eval_steps_per_epoch, batch in enumerate(
tqdm(self.eval_data_loader, desc="[eval]"), 1
):
# eval one step
self.one_step_evaluate(batch)
if eval_steps_per_epoch <= self.config["num_save_intermediate_results"]:
# save intermedia
self.generate_and_save_intermediate_result(batch)
logging.info(
f"(Steps: {self.steps}) Finished evaluation "
f"({eval_steps_per_epoch} steps per epoch)."
)
# average loss
for key in self.eval_metrics.keys():
logging.info(
f"(Steps: {self.steps}) eval_{key} = {self.eval_metrics[key].result():.4f}."
)
# record
self._write_to_tensorboard(self.eval_metrics, stage="eval")
# reset
self.reset_states_eval()
def _one_step_evaluate_per_replica(self, batch):
outputs = self._model(**batch, training=False)
_, dict_metrics_losses = self.compute_per_example_losses(batch, outputs)
self.update_eval_metrics(dict_metrics_losses)
def _one_step_evaluate(self, batch):
self._strategy.run(self._one_step_evaluate_per_replica, args=(batch,))
def _one_step_predict_per_replica(self, batch):
outputs = self._model(**batch, training=False)
return outputs
def _one_step_predict(self, batch):
outputs = self._strategy.run(self._one_step_predict_per_replica, args=(batch,))
return outputs
@abc.abstractmethod
def generate_and_save_intermediate_result(self, batch):
return
def create_checkpoint_manager(self, saved_path=None, max_to_keep=10):
"""Create checkpoint management."""
if saved_path is None:
saved_path = self.config["outdir"] + "/checkpoints/"
os.makedirs(saved_path, exist_ok=True)
self.saved_path = saved_path
self.ckpt = tf.train.Checkpoint(
steps=tf.Variable(1), epochs=tf.Variable(1), optimizer=self.get_optimizer()
)
self.ckp_manager = tf.train.CheckpointManager(
self.ckpt, saved_path, max_to_keep=max_to_keep
)
def save_checkpoint(self):
"""Save checkpoint."""
self.ckpt.steps.assign(self.steps)
self.ckpt.epochs.assign(self.epochs)
self.ckp_manager.save(checkpoint_number=self.steps)
utils.save_weights(
self._model,
self.saved_path + "model-{}.h5".format(self.steps)
)
def load_checkpoint(self, pretrained_path):
"""Load checkpoint."""
self.ckpt.restore(pretrained_path)
self.steps = self.ckpt.steps.numpy()
self.epochs = self.ckpt.epochs.numpy()
self._optimizer = self.ckpt.optimizer
# re-assign iterations (global steps) for optimizer.
self._optimizer.iterations.assign(tf.cast(self.steps, tf.int64))
# load weights.
utils.load_weights(
self._model,
self.saved_path + "model-{}.h5".format(self.steps)
)
def _check_train_finish(self):
"""Check training finished."""
if self.steps >= self.config["train_max_steps"]:
self.finish_train = True
def _check_log_interval(self):
"""Log to tensorboard."""
if self.steps % self.config["log_interval_steps"] == 0:
for metric_name in self.list_metrics_name:
logging.info(
f"(Step: {self.steps}) train_{metric_name} = {self.train_metrics[metric_name].result():.4f}."
)
self._write_to_tensorboard(self.train_metrics, stage="train")
# reset
self.reset_states_train()
def fit(self, train_data_loader, valid_data_loader, saved_path, resume=None):
self.set_train_data_loader(train_data_loader)
self.set_eval_data_loader(valid_data_loader)
self.train_data_loader = self._strategy.experimental_distribute_dataset(
self.train_data_loader