-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_rain.py
610 lines (491 loc) · 22.7 KB
/
train_rain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import argparse
import os, sys
import os.path as osp
import torchvision
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import random, pdb, math, copy
from tqdm import tqdm
from scipy.spatial.distance import cdist
from sklearn.metrics import confusion_matrix
from data_prepare import *
from loss import *
from FFT import *
from network import *
def tensor_rot_90(x):
return x.flip(2).transpose(1, 2)
def tensor_rot_180(x):
return x.flip(2).flip(1)
def tensor_rot_270(x):
return x.transpose(1, 2).flip(2)
def rotate_single_with_label(img, label):
if label == 1:
img = tensor_rot_90(img)
elif label == 2:
img = tensor_rot_180(img)
elif label == 3:
img = tensor_rot_270(img)
return img
def rotate_batch_with_labels(batch, labels):
images = []
for img, label in zip(batch, labels):
img = rotate_single_with_label(img, label)
images.append(img.unsqueeze(0))
return torch.cat(images)
def cal_acc_rot(loader, netF, netB, netR):
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for i in range(len(loader)):
data = iter_test.next()
inputs = data[0]#.cuda()
r_labels = np.random.randint(0, 4, len(inputs))
r_inputs = rotate_batch_with_labels(inputs, r_labels)
r_labels = torch.from_numpy(r_labels)
#r_inputs = r_inputs.cuda()
f_outputs = netB(netF(inputs))
f_r_outputs = netB(netF(r_inputs))
r_outputs = netR(torch.cat((f_outputs, f_r_outputs), 1))
if start_test:
all_output = r_outputs.float()#.cpu()
all_label = r_labels.float()
start_test = False
else:
all_output = torch.cat((all_output, r_outputs.float().cpu()), 0)
all_label = torch.cat((all_label, r_labels.float()), 0)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
return accuracy*100
def train_target_rot(args):
dset_loaders = data_load(args)
## set base network
if args.net[0:3] == 'res':
netF = ResBase(res_name=args.net)#.cuda()
elif args.net[0:3] == 'vgg':
netF = VGGBase(vgg_name=args.net)#.cuda()
netB = feat_bootleneck(type=args.classifier, feature_dim=netF.in_features, bottleneck_dim=args.bottleneck)#.cuda()
netR = feat_classifier(type='linear', class_num=4, bottleneck_dim=2*args.bottleneck)#.cuda()
modelpath = args.output_dir_src + '/source_F.pt'
netF.load_state_dict(torch.load(modelpath))
netF.eval()
for k, v in netF.named_parameters():
v.requires_grad = False
modelpath = args.output_dir_src + '/source_B.pt'
netB.load_state_dict(torch.load(modelpath))
netB.eval()
for k, v in netB.named_parameters():
v.requires_grad = False
param_group = []
for k, v in netR.named_parameters():
param_group += [{'params': v, 'lr': args.lr*1}]
netR.train()
optimizer = optim.SGD(param_group)
optimizer = op_copy(optimizer)
max_iter = args.max_epoch * len(dset_loaders["target"])
interval_iter = max_iter // 10
iter_num = 0
rot_acc = 0
while iter_num < max_iter:
optimizer.zero_grad()
try:
inputs_test, _, tar_idx = iter_test.next()
except:
iter_test = iter(dset_loaders["target"])
inputs_test, _, tar_idx = iter_test.next()
if inputs_test.size(0) == 1:
continue
#inputs_test = inputs_test.cuda()
iter_num += 1
lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
r_labels_target = np.random.randint(0, 4, len(inputs_test))
r_inputs_target = rotate_batch_with_labels(inputs_test, r_labels_target)
r_labels_target = torch.from_numpy(r_labels_target)#.cuda()
#r_inputs_target = r_inputs_target.cuda()
f_outputs = netB(netF(inputs_test))
f_r_outputs = netB(netF(r_inputs_target))
r_outputs_target = netR(torch.cat((f_outputs, f_r_outputs), 1))
rotation_loss = nn.CrossEntropyLoss()(r_outputs_target, r_labels_target)
rotation_loss.backward()
optimizer.step()
if iter_num % interval_iter == 0 or iter_num == max_iter:
netR.eval()
acc_rot = cal_acc_rot(dset_loaders['target'], netF, netB, netR)
log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name, iter_num, max_iter, acc_rot)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str+'\n')
netR.train()
if rot_acc < acc_rot:
rot_acc = acc_rot
best_netR = netR.state_dict()
log_str = 'Best Accuracy = {:.2f}%'.format(rot_acc)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str+'\n')
return best_netR, rot_acc
def cal_acc(loader, netF, netB, netC, flag=False):
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for i in range(len(loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
#inputs = inputs.cuda()
outputs = netC(netB(netF(inputs)))
if start_test:
all_output = outputs.float()#.cpu()
all_label = labels.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
all_output = nn.Softmax(dim=1)(all_output)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
mean_ent = torch.mean(Entropy(all_output)).data.item()
if flag:
matrix = confusion_matrix(all_label, torch.squeeze(predict).float())
acc = matrix.diagonal()/matrix.sum(axis=1) * 100
aacc = acc.mean()
aa = [str(np.round(i, 2)) for i in acc]
acc = ' '.join(aa)
return aacc, acc
else:
return accuracy*100, mean_ent
def train_source_simp(args):
dset_loaders = data_load(args)
if args.net_src[0:3] == 'res':
netF = network.ResBase(res_name=args.net_src)#.cuda()
netC = network.feat_classifier_simpl(class_num=args.class_num, feat_dim=netF.in_features)#.cuda()
param_group = []
learning_rate = args.lr_src
for k, v in netF.named_parameters():
param_group += [{'params': v, 'lr': learning_rate*0.1}]
for k, v in netC.named_parameters():
param_group += [{'params': v, 'lr': learning_rate}]
optimizer = optim.SGD(param_group)
optimizer = op_copy(optimizer)
acc_init = 0
max_iter = args.max_epoch * len(dset_loaders["source_tr"])
interval_iter = max_iter // 10
iter_num = 0
netF.train()
netC.train()
while iter_num < max_iter:
try:
inputs_source, labels_source = iter_source.next()
except:
iter_source = iter(dset_loaders["source_tr"])
inputs_source, labels_source = iter_source.next()
if inputs_source.size(0) == 1:
continue
iter_num += 1
lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
#inputs_source, labels_source = inputs_source.cuda(), labels_source.cuda()
outputs_source = netC(netF(inputs_source))
classifier_loss = CrossEntropyLabelSmooth(num_classes=args.class_num, epsilon=0.1)(outputs_source, labels_source)
optimizer.zero_grad()
classifier_loss.backward()
optimizer.step()
if iter_num % interval_iter == 0 or iter_num == max_iter:
netF.eval()
netC.eval()
acc_s_te, _ = cal_acc(dset_loaders['source_te'], netF, None, netC, False)
log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name_src, iter_num, max_iter, acc_s_te)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str+'\n')
if acc_s_te >= acc_init:
acc_init = acc_s_te
best_netF = netF.state_dict()
best_netC = netC.state_dict()
netF.train()
netC.train()
torch.save(best_netF, osp.join(args.output_dir_src, "source_F.pt"))
torch.save(best_netC, osp.join(args.output_dir_src, "source_C.pt"))
return netF, netC
def train_target(args):
dset_loaders = data_load_list(args)
## set base network
if args.net[0:3] == 'res':
netF = ResBase(res_name=args.net)#.cuda()
netFs = ResBase(res_name=args.net)#.cuda()
elif args.net[0:3] == 'vgg':
netF = VGGBase(vgg_name=args.net)#.cuda()
netFs = VGGBase(vgg_name=args.net)#.cuda()
netB = feat_bootleneck(type=args.classifier, feature_dim=netF.in_features, bottleneck_dim=args.bottleneck)#.cuda()
netC = feat_classifier(type=args.layer, class_num = args.class_num, bottleneck_dim=args.bottleneck)#.cuda()
netC2 = feat_classifier(type=args.layer, class_num = args.class_num, bottleneck_dim=args.bottleneck)
netBs = feat_bootleneck(type=args.classifier, feature_dim=netF.in_features, bottleneck_dim=args.bottleneck)#.cuda()
netCs = feat_classifier(type=args.layer, class_num = args.class_num, bottleneck_dim=args.bottleneck)#.cuda()
#if not args.ssl == 0:
#netR = feat_classifier(type='linear', class_num=4, bottleneck_dim=2*args.bottleneck)#.cuda()
#netR_dict, acc_rot = train_target_rot(args)
#netR.load_state_dict(netR_dict)
modelpath = args.output_dir_src + '/source_F.pt'
netFs.load_state_dict(torch.load(modelpath))
netFs.eval()
modelpath = args.output_dir_src + '/source_B.pt'
netBs.load_state_dict(torch.load(modelpath))
netBs.eval()
modelpath = args.output_dir_src + '/source_C.pt'
netCs.load_state_dict(torch.load(modelpath))
netCs.eval()
for k, v in netC.named_parameters():
v.requires_grad = False
param_group = []
for k, v in netF.named_parameters():
if args.lr_decay1 > 0:
param_group += [{'params': v, 'lr': args.lr * args.lr_decay1}]
else:
v.requires_grad = False
for k, v in netB.named_parameters():
if args.lr_decay2 > 0:
param_group += [{'params': v, 'lr': args.lr * args.lr_decay2}]
else:
v.requires_grad = False
optimizer = optim.SGD(param_group)
optimizer = op_copy(optimizer)
max_iter = args.max_epoch * len(dset_loaders["target"])
interval_iter = max_iter // args.interval
iter_num = 0
start_test = True
with torch.no_grad():
iter_test = iter(dset_loaders["target_te"])
for i in range(len(dset_loaders["target_te"])):
data = iter_test.next()
inputs, labels = data[0], data[1]
#inputs = inputs.cuda()
outputs = netCs(netBs(netFs(inputs)))
outputs = nn.Softmax(dim=1)(outputs)
_, src_idx = torch.sort(outputs, 1, descending=True)
if args.topk > 0:
topk = np.min([args.topk, args.class_num])
for i in range(outputs.size()[0]):
outputs[i, src_idx[i, topk:]] = (1.0 - outputs[i, src_idx[i, :topk]].sum())/ (outputs.size()[1] - topk)
if start_test:
all_output = outputs.float()
all_label = labels
start_test = False
else:
all_output = torch.cat((all_output, outputs.float()), 0)
all_label = torch.cat((all_label, labels), 0)
mem_P = all_output.detach()
while iter_num < max_iter:
if args.ema < 1.0 and iter_num > 0 and iter_num % interval_iter == 0:
netF.eval()
netB.eval()
netC.eval()
start_test = True
with torch.no_grad():
iter_test = iter(dset_loaders["target_te"])
for i in range(len(dset_loaders["target_te"])):
data = iter_test.next()
inputs = data[0]
#inputs = inputs.cuda()
outputs = netC(netB(netF(inputs)))
outputs = nn.Softmax(dim=1)(outputs)
if start_test:
all_output = outputs.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float()), 0)
mem_P = mem_P * args.ema + all_output.detach() * (1 - args.ema)
netF.train()
netB.train()
netC.train()
optimizer.zero_grad()
try:
inputs_test_list, _, tar_idx = iter_test.next()
inputs_test = inputs_test_list[0]
except:
iter_test = iter(dset_loaders["target"])
inputs_test_list, _, tar_idx = iter_test.next()
inputs_test = inputs_test_list[0]
if inputs_test.size(0) == 1:
continue
with torch.no_grad():
outputs_target_by_source = mem_P[tar_idx, :]
_, src_idx = torch.sort(outputs_target_by_source, 1, descending=True)
outputs_target = netC(netB(netF(inputs_test)))
outputs_target = torch.nn.Softmax(dim=1)(outputs_target)
classifier_loss = nn.KLDivLoss(reduction='batchmean')(outputs_target.log(), outputs_target_by_source)
#inputs_test = inputs_test.cuda()
iter_num += 1
lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
#features_test = netB(netF(inputs_test))
#outputs_test = netC(features_test)
if args.ent:
#softmax_out = nn.Softmax(dim=1)(outputs_test)
entropy_loss = torch.mean(Entropy(outputs_target))
if args.gent:
msoftmax = outputs_target.mean(dim=0)
gentropy_loss = torch.sum(-msoftmax * torch.log(msoftmax + args.epsilon))
entropy_loss -= gentropy_loss
im_loss = entropy_loss * args.ent_par
classifier_loss += im_loss
index = torch.randperm(inputs_test.shape[0])
inputs_asst = inputs_test[index,:,:,:]
#amp_asst, _ = divide_spectrum(inputs_asst)
_, pha_asst = divide_spectrum(inputs_asst)
inputs_pseudo = pha_space_interpolation(inputs_test, pha_asst, L=1 , ratio=0)
features_pseudo = netB(netF(inputs_pseudo))
outputs_pseudo = netC(features_pseudo)
l1_loss = torch.mean(torch.abs(outputs_target - F.softmax(outputs_pseudo, dim=1)) ) * 1.2
classifier_loss += l1_loss
classifier_loss.backward()
'''if not args.ssl == 0:
r_labels_target = np.random.randint(0, 4, len(inputs_test))
r_inputs_target = rotate_batch_with_labels(inputs_test, r_labels_target)
r_labels_target = torch.from_numpy(r_labels_target)#.cuda()
#r_inputs_target = r_inputs_target.cuda()
f_outputs = netB(netF(inputs_test))
f_outputs = f_outputs.detach()
f_r_outputs = netB(netF(r_inputs_target))
r_outputs_target = netR(torch.cat((f_outputs, f_r_outputs), 1))
rotation_loss = args.ssl * nn.CrossEntropyLoss()(r_outputs_target, r_labels_target)
rotation_loss.backward()'''
max_width = args.width_mult_range[1] #### to do
netF.apply(lambda m: setattr(m, 'width_mult', max_width))
max_output = netC(netB(netF(inputs_test)))
max_output_detach = max_output.detach()
# do other widths and resolution
min_width = args.width_mult_range[0]
width_mult_list = [min_width]
sampled_width = list(np.random.uniform(args.width_mult_range[0], args.width_mult_range[1], 2))
width_mult_list.extend(sampled_width)
for width_mult in sorted(width_mult_list, reverse=True):
netF.apply(
lambda m: setattr(m, 'width_mult', width_mult))
netC2.load_state_dict(copy.deepcopy(netC.state_dict()))
output = netC2(netB(netF(inputs_test_list[random.randint(0, 3)])))
output_detach = output.detach()
kd_loss = 0.6 * torch.nn.KLDivLoss(reduction='batchmean')(F.log_softmax(output, dim=1), F.softmax(max_output_detach, dim=1))
kd_loss = 0.6 * torch.nn.KLDivLoss(reduction='batchmean')(F.softmax(max_output, dim=1), F.log_softmax(output_detach, dim=1))
kd_loss /= 2
kd_loss.backward()
for n, p in netC.named_parameters():
full_grad = grad([kd_loss],
[p],
create_graph=True,
only_inputs=True,
allow_unused=False)[0]
for n, p in netC2.named_parameters():
sub_grad = grad([kd_loss],
[p],
create_graph=True,
only_inputs=True,
allow_unused=False)[0]
wg_loss = F.cosine_similarity(full_grad, sub_grad, dim=1).mean()
wg_loss *= 1+torch.exp(-Entropy(output))
wg_loss *= 0.3
optimizer.step()
if iter_num % interval_iter == 0 or iter_num == max_iter:
netF.eval()
netB.eval()
if args.dset=='VISDA-C':
acc_s_te, acc_list = cal_acc(dset_loaders['test'], netF, netB, netC, True)
log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name, iter_num, max_iter, acc_s_te) + '\n' + acc_list
else:
acc_s_te, _ = cal_acc(dset_loaders['test'], netF, netB, netC, False)
log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name, iter_num, max_iter, acc_s_te)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str+'\n')
netF.train()
netB.train()
if args.issave:
torch.save(netF.state_dict(), osp.join(args.output_dir, "target_F_" + args.savename + ".pt"))
torch.save(netB.state_dict(), osp.join(args.output_dir, "target_B_" + args.savename + ".pt"))
torch.save(netC.state_dict(), osp.join(args.output_dir, "target_C_" + args.savename + ".pt"))
return netF, netB, netC
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='SHOT')
parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
parser.add_argument('--s', type=int, default=0, help="source")
parser.add_argument('--t', type=int, default=1, help="target")
parser.add_argument('--max_epoch', type=int, default=30, help="max iterations")
parser.add_argument('--interval', type=int, default=120)
parser.add_argument('--batch_size', type=int, default=64, help="batch_size")
parser.add_argument('--worker', type=int, default=4, help="number of workers")
parser.add_argument('--dset', type=str, default='office', choices=['VISDA-C', 'office', 'office-home', 'office-caltech'])
parser.add_argument('--lr', type=float, default=1e-2, help="learning rate")
parser.add_argument('--net', type=str, default='resnet50', help="alexnet, vgg16, resnet50, res101")
parser.add_argument('--seed', type=int, default=2020, help="random seed")
parser.add_argument('--gent', type=bool, default=True)
parser.add_argument('--ent', type=bool, default=True)
parser.add_argument('--threshold', type=int, default=0)
parser.add_argument('--cls_par', type=float, default=0.3)
parser.add_argument('--ent_par', type=float, default=1.0)
parser.add_argument('--lr_decay1', type=float, default=0.1)
parser.add_argument('--lr_decay2', type=float, default=1.0)
parser.add_argument('--bottleneck', type=int, default=256)
parser.add_argument('--epsilon', type=float, default=1e-5)
parser.add_argument('--layer', type=str, default="wn", choices=["linear", "wn"])
parser.add_argument('--classifier', type=str, default="bn", choices=["ori", "bn"])
parser.add_argument('--distance', type=str, default='cosine', choices=["euclidean", "cosine"])
parser.add_argument('--output', type=str, default='san')
parser.add_argument('--output_src', type=str, default='san')
parser.add_argument('--da', type=str, default='uda', choices=['uda', 'pda'])
parser.add_argument('--ssl', type=float, default=0.6)
parser.add_argument('--issave', type=bool, default=True)
args = parser.parse_args(args=[])
if args.dset == 'office-home':
names = ['Art', 'Clipart', 'Product', 'Real_World']
args.class_num = 65
if args.dset == 'office':
names = ['amazon', 'dslr', 'webcam']
args.class_num = 31
if args.dset == 'VISDA-C':
names = ['train', 'validation']
args.class_num = 12
if args.dset == 'office-caltech':
names = ['amazon', 'caltech', 'dslr', 'webcam']
args.class_num = 10
args.width_mult_range = [0.9, 1.0]
args.width_mult_list = [0.9, 1.0]
#os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
SEED = args.seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
def print_args(args):
s = "==========================================\n"
for arg, content in args.__dict__.items():
s += "{}:{}\n".format(arg, content)
return s
print('Called with args:')
print(args)
args.t = 1
folder = './data/'
args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_list.txt'
args.t_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
args.test_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
if args.dset == 'office-home':
if args.da == 'pda':
args.class_num = 65
args.src_classes = [i for i in range(65)]
args.tar_classes = [i for i in range(25)]
args.output_dir_src = osp.join(args.output_src, args.da, args.dset, names[args.s][0].upper())
args.output_dir = osp.join(args.output, args.da, args.dset, names[args.s][0].upper()+names[args.t][0].upper())
args.name = names[args.s][0].upper()+names[args.t][0].upper()
if not osp.exists(args.output_dir):
os.system('mkdir -p ' + args.output_dir)
if not osp.exists(args.output_dir):
os.mkdir(args.output_dir)
args.savename = 'par_' + str(args.cls_par)
if args.da == 'pda':
args.gent = ''
args.savename = 'par_' + str(args.cls_par) + '_thr' + str(args.threshold)
args.out_file = open(osp.join(args.output_dir, 'log_' + args.savename + '.txt'), 'w')
args.out_file.write(print_args(args)+'\n')
args.out_file.flush()
train_target(args)