-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
Copy pathalign_dataset_mtcnn.py
159 lines (144 loc) · 8.11 KB
/
align_dataset_mtcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""Performs face alignment and stores face thumbnails in the output directory."""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from scipy import misc
import sys
import os
import argparse
import tensorflow as tf
import numpy as np
import facenet
import align.detect_face
import random
from time import sleep
def main(args):
sleep(random.random())
output_dir = os.path.expanduser(args.output_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Store some git revision info in a text file in the log directory
src_path,_ = os.path.split(os.path.realpath(__file__))
facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv))
dataset = facenet.get_dataset(args.input_dir)
print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)
minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor
# Add a random key to the filename to allow alignment using multiple processes
random_key = np.random.randint(0, high=99999)
bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key)
with open(bounding_boxes_filename, "w") as text_file:
nrof_images_total = 0
nrof_successfully_aligned = 0
if args.random_order:
random.shuffle(dataset)
for cls in dataset:
output_class_dir = os.path.join(output_dir, cls.name)
if not os.path.exists(output_class_dir):
os.makedirs(output_class_dir)
if args.random_order:
random.shuffle(cls.image_paths)
for image_path in cls.image_paths:
nrof_images_total += 1
filename = os.path.splitext(os.path.split(image_path)[1])[0]
output_filename = os.path.join(output_class_dir, filename+'.png')
print(image_path)
if not os.path.exists(output_filename):
try:
img = misc.imread(image_path)
except (IOError, ValueError, IndexError) as e:
errorMessage = '{}: {}'.format(image_path, e)
print(errorMessage)
else:
if img.ndim<2:
print('Unable to align "%s"' % image_path)
text_file.write('%s\n' % (output_filename))
continue
if img.ndim == 2:
img = facenet.to_rgb(img)
img = img[:,:,0:3]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0]
if nrof_faces>0:
det = bounding_boxes[:,0:4]
det_arr = []
img_size = np.asarray(img.shape)[0:2]
if nrof_faces>1:
if args.detect_multiple_faces:
for i in range(nrof_faces):
det_arr.append(np.squeeze(det[i]))
else:
bounding_box_size = (det[:,2]-det[:,0])*(det[:,3]-det[:,1])
img_center = img_size / 2
offsets = np.vstack([ (det[:,0]+det[:,2])/2-img_center[1], (det[:,1]+det[:,3])/2-img_center[0] ])
offset_dist_squared = np.sum(np.power(offsets,2.0),0)
index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering
det_arr.append(det[index,:])
else:
det_arr.append(np.squeeze(det))
for i, det in enumerate(det_arr):
det = np.squeeze(det)
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-args.margin/2, 0)
bb[1] = np.maximum(det[1]-args.margin/2, 0)
bb[2] = np.minimum(det[2]+args.margin/2, img_size[1])
bb[3] = np.minimum(det[3]+args.margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
scaled = misc.imresize(cropped, (args.image_size, args.image_size), interp='bilinear')
nrof_successfully_aligned += 1
filename_base, file_extension = os.path.splitext(output_filename)
if args.detect_multiple_faces:
output_filename_n = "{}_{}{}".format(filename_base, i, file_extension)
else:
output_filename_n = "{}{}".format(filename_base, file_extension)
misc.imsave(output_filename_n, scaled)
text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3]))
else:
print('Unable to align "%s"' % image_path)
text_file.write('%s\n' % (output_filename))
print('Total number of images: %d' % nrof_images_total)
print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('input_dir', type=str, help='Directory with unaligned images.')
parser.add_argument('output_dir', type=str, help='Directory with aligned face thumbnails.')
parser.add_argument('--image_size', type=int,
help='Image size (height, width) in pixels.', default=182)
parser.add_argument('--margin', type=int,
help='Margin for the crop around the bounding box (height, width) in pixels.', default=44)
parser.add_argument('--random_order',
help='Shuffles the order of images to enable alignment using multiple processes.', action='store_true')
parser.add_argument('--gpu_memory_fraction', type=float,
help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0)
parser.add_argument('--detect_multiple_faces', type=bool,
help='Detect and align multiple faces per image.', default=False)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))