-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_stdbscan.py
110 lines (71 loc) · 2.79 KB
/
preprocess_stdbscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from datetime import timedelta, datetime
from geopy.distance import great_circle
import math
import argparse
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
file_path = 'data/ms.csv'
def parse_dates(x):
return datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
def heatMap(long, lat, area, bins=200, smoothing=1, vmax=4, title=None):
x = area.to_pixels(lat, long)[0]
y = area.to_pixels(lat, long)[1]
ax = area.show_mpl(figsize=(12, 10))
heatmap, xedges, yedges = np.histogram2d(y, x, bins=bins)
extent = [yedges[0], yedges[-1], xedges[-1], xedges[0]]
logheatmap = np.log(heatmap)
logheatmap[np.isneginf(logheatmap)] = 0
logheatmap = ndimage.filters.gaussian_filter(logheatmap, smoothing, mode='nearest')
output = ax.imshow(logheatmap, cmap=cmap, extent=extent, vmin=0, vmax=vmax)
if title:
ax.set_title(title, size=25)
plt.savefig(title+'.png', bbox_inches='tight')
print(np.amax(logheatmap))
return output
#df2 = pd.read_csv(file_path)
#print df2
latMin = 39.8
latMax = 40
longMin = 116.2
longMax = 116.4
df = pd.read_csv(file_path,converters={'time': parse_dates})
query = df[(df['time'].dt.hour == 13) & (df['time'].dt.day == 2) & (df['time'].dt.minute == 50) \
& (df.lat.between(latMin, latMax)) & (df.long.between(longMin, longMax))]
X = np.array(query[['lat','long']])
#dfBeijing = query[(query.lat.between(latMin, latMax)) & (query.long.between(longMin, longMax))]
#print(dfBeijing)
print(len(X))
X = StandardScaler().fit_transform(X)
# Compute DBSCAN
db = DBSCAN(eps=0.2, min_samples=20).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
#print(db)
#print(core_samples_mask)
#print(labels)
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()