forked from tensorflow/benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 3
/
preprocessing.py
737 lines (638 loc) · 28.6 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image pre-processing utilities.
"""
import glob
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.python.layers import utils
from tensorflow.python.ops import data_flow_ops
import cnn_util
FLAGS = tf.flags.FLAGS
def parse_example_proto(example_serialized):
"""Parses an Example proto containing a training example of an image.
The output of the build_image_data.py image preprocessing script is a dataset
containing serialized Example protocol buffers. Each Example proto contains
the following fields:
image/height: 462
image/width: 581
image/colorspace: 'RGB'
image/channels: 3
image/class/label: 615
image/class/synset: 'n03623198'
image/class/text: 'knee pad'
image/object/bbox/xmin: 0.1
image/object/bbox/xmax: 0.9
image/object/bbox/ymin: 0.2
image/object/bbox/ymax: 0.6
image/object/bbox/label: 615
image/format: 'JPEG'
image/filename: 'ILSVRC2012_val_00041207.JPEG'
image/encoded: <JPEG encoded string>
Args:
example_serialized: scalar Tensor tf.string containing a serialized
Example protocol buffer.
Returns:
image_buffer: Tensor tf.string containing the contents of a JPEG file.
label: Tensor tf.int32 containing the label.
bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
where each coordinate is [0, 1) and the coordinates are arranged as
[ymin, xmin, ymax, xmax].
text: Tensor tf.string containing the human-readable label.
"""
# Dense features in Example proto.
feature_map = {
'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
default_value=''),
'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
default_value=-1),
'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
default_value=''),
}
sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
# Sparse features in Example proto.
feature_map.update(
{k: sparse_float32 for k in ['image/object/bbox/xmin',
'image/object/bbox/ymin',
'image/object/bbox/xmax',
'image/object/bbox/ymax']})
features = tf.parse_single_example(example_serialized, feature_map)
label = tf.cast(features['image/class/label'], dtype=tf.int32)
xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)
# Note that we impose an ordering of (y, x) just to make life difficult.
bbox = tf.concat([ymin, xmin, ymax, xmax], 0)
# Force the variable number of bounding boxes into the shape
# [1, num_boxes, coords].
bbox = tf.expand_dims(bbox, 0)
bbox = tf.transpose(bbox, [0, 2, 1])
return features['image/encoded'], label, bbox, features['image/class/text']
def get_image_resize_method(resize_method, batch_position=0):
"""Get tensorflow resize method.
If method is 'round_robin', return different methods based on batch position
in a round-robin fashion. NOTE: If the batch size is not a multiple of the
number of methods, then the distribution of methods will not be uniform.
Args:
resize_method: (string) nearest, bilinear, bicubic, area, or round_robin.
batch_position: position of the image in a batch. NOTE: this argument can
be an integer or a tensor
Returns:
one of resize type defined in tf.image.ResizeMethod.
"""
resize_methods_map = {
'nearest': tf.image.ResizeMethod.NEAREST_NEIGHBOR,
'bilinear': tf.image.ResizeMethod.BILINEAR,
'bicubic': tf.image.ResizeMethod.BICUBIC,
'area': tf.image.ResizeMethod.AREA
}
if resize_method != 'round_robin':
return resize_methods_map[resize_method]
# return a resize method based on batch position in a round-robin fashion.
resize_methods = resize_methods_map.values()
def lookup(index):
return resize_methods[index]
def resize_method_0():
return utils.smart_cond(batch_position % len(resize_methods) == 0,
lambda: lookup(0), resize_method_1)
def resize_method_1():
return utils.smart_cond(batch_position % len(resize_methods) == 1,
lambda: lookup(1), resize_method_2)
def resize_method_2():
return utils.smart_cond(batch_position % len(resize_methods) == 2,
lambda: lookup(2), lambda: lookup(3))
# NOTE(jsimsa): Unfortunately, we cannot use a single recursive function here
# because TF would not be able to construct a finite graph.
return resize_method_0()
def decode_jpeg(image_buffer, scope=None): # , dtype=tf.float32):
"""Decode a JPEG string into one 3-D float image Tensor.
Args:
image_buffer: scalar string Tensor.
scope: Optional scope for op_scope.
Returns:
3-D float Tensor with values ranging from [0, 1).
"""
# with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
# with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
with tf.name_scope(scope or 'decode_jpeg'):
# Decode the string as an RGB JPEG.
# Note that the resulting image contains an unknown height and width
# that is set dynamically by decode_jpeg. In other words, the height
# and width of image is unknown at compile-time.
image = tf.image.decode_jpeg(image_buffer, channels=3,
fancy_upscaling=False,
dct_method='INTEGER_FAST')
# image = tf.Print(image, [tf.shape(image)], 'Image shape: ')
return image
def eval_image(image, height, width, batch_position, resize_method):
"""Get the image for model evaluation.
We preprocess the image simiarly to Slim, see
https://github.com/tensorflow/models/blob/master/slim/preprocessing/vgg_preprocessing.py
Validation images do not have bounding boxes, so to crop the image, we first
resize the image such that the aspect ratio is maintained and the resized
height and width are both at least 1.15 times `height` and `width`
respectively. Then, we do a central crop to size (`height`, `width`).
TODO(b/64579165): Determine if we should use different evaluation
prepossessing steps.
Args:
image: 3-D float Tensor representing the image.
height: The height of the image that will be returned.
width: The width of the image that will be returned.
batch_position: position of the image in a batch, which affects how images
are distorted and resized. NOTE: this argument can be an integer or a
tensor
resize_method: one of the strings 'round_robin', 'nearest', 'bilinear',
'bicubic', or 'area'.
Returns:
An image of size (output_height, output_width, 3) that is resized and
cropped as described above.
"""
# TODO(reedwm): Currently we resize then crop. Investigate if it's faster to
# crop then resize.
with tf.name_scope('eval_image'):
if FLAGS.summary_verbosity >= 2:
tf.summary.image(
'original_image', tf.expand_dims(image, 0))
shape = tf.shape(image)
image_height = shape[0]
image_width = shape[1]
image_height_float = tf.cast(image_height, tf.float32)
image_width_float = tf.cast(image_width, tf.float32)
scale_factor = 1.15
# Compute resize_height and resize_width to be the minimum values such that
# 1. The aspect ratio is maintained (i.e. resize_height / resize_width is
# image_height / image_width), and
# 2. resize_height >= height * `scale_factor`, and
# 3. resize_width >= width * `scale_factor`
max_ratio = tf.maximum(height / image_height_float,
width / image_width_float)
resize_height = tf.cast(image_height_float * max_ratio * scale_factor,
tf.int32)
resize_width = tf.cast(image_width_float * max_ratio * scale_factor,
tf.int32)
# Resize the image to shape (`resize_height`, `resize_width`)
image_resize_method = get_image_resize_method(resize_method, batch_position)
distorted_image = tf.image.resize_images(image,
[resize_height, resize_width],
image_resize_method,
align_corners=False)
# Do a central crop of the image to size (height, width).
total_crop_height = (resize_height - height)
crop_top = total_crop_height // 2
total_crop_width = (resize_width - width)
crop_left = total_crop_width // 2
distorted_image = tf.slice(distorted_image, [crop_top, crop_left, 0],
[height, width, 3])
distorted_image.set_shape([height, width, 3])
if FLAGS.summary_verbosity >= 2:
tf.summary.image(
'cropped_resized_image', tf.expand_dims(distorted_image, 0))
image = distorted_image
return image
def train_image(image,
height,
width,
bbox,
batch_position,
resize_method,
distortions,
scope=None):
"""Distort one image for training a network.
Distorting images provides a useful technique for augmenting the data
set during training in order to make the network invariant to aspects
of the image that do not effect the label.
Args:
image: 3-D float Tensor of image
height: integer
width: integer
bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
where each coordinate is [0, 1) and the coordinates are arranged
as [ymin, xmin, ymax, xmax].
batch_position: position of the image in a batch, which affects how images
are distorted and resized. NOTE: this argument can be an integer or a
tensor
resize_method: round_robin, nearest, bilinear, bicubic, or area.
distortions: If true, apply full distortions for image colors.
scope: Optional scope for op_scope.
Returns:
3-D float Tensor of distorted image used for training.
"""
# with tf.op_scope([image, height, width, bbox], scope, 'distort_image'):
# with tf.name_scope(scope, 'distort_image', [image, height, width, bbox]):
with tf.name_scope(scope or 'distort_image'):
# Each bounding box has shape [1, num_boxes, box coords] and
# the coordinates are ordered [ymin, xmin, ymax, xmax].
if distortions:
# After this point, all image pixels reside in [0,1)
# until the very end, when they're rescaled to (-1, 1). The various
# adjust_* ops all require this range for dtype float.
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
# Display the bounding box.
if FLAGS.summary_verbosity >= 2:
image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0),
bbox)
tf.summary.image(
'image_with_bounding_boxes', image_with_box)
# A large fraction of image datasets contain a human-annotated bounding box
# delineating the region of the image containing the object of interest. We
# choose to create a new bounding box for the object which is a randomly
# distorted version of the human-annotated bounding box that obeys an
# allowed range of aspect ratios, sizes and overlap with the human-annotated
# bounding box. If no box is supplied, then we assume the bounding box is
# the entire image.
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
tf.shape(image),
bounding_boxes=bbox,
min_object_covered=0.1,
aspect_ratio_range=[0.75, 1.33],
area_range=[0.05, 1.0],
max_attempts=100,
use_image_if_no_bounding_boxes=True)
bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box
if FLAGS.summary_verbosity >= 2:
image_with_distorted_box = tf.image.draw_bounding_boxes(
tf.expand_dims(image, 0), distort_bbox)
tf.summary.image(
'images_with_distorted_bounding_box',
image_with_distorted_box)
# Crop the image to the specified bounding box.
distorted_image = tf.slice(image, bbox_begin, bbox_size)
# This resizing operation may distort the images because the aspect
# ratio is not respected.
image_resize_method = get_image_resize_method(resize_method, batch_position)
if cnn_util.tensorflow_version() >= 11:
distorted_image = tf.image.resize_images(
distorted_image, [height, width],
image_resize_method,
align_corners=False)
else:
distorted_image = tf.image.resize_images(
distorted_image,
height,
width,
image_resize_method,
align_corners=False)
# Restore the shape since the dynamic slice based upon the bbox_size loses
# the third dimension.
distorted_image.set_shape([height, width, 3])
if FLAGS.summary_verbosity >= 2:
tf.summary.image(
'cropped_resized_image',
tf.expand_dims(distorted_image, 0))
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
if distortions:
# Randomly distort the colors.
distorted_image = distort_color(distorted_image, batch_position)
# Note: This ensures the scaling matches the output of eval_image
distorted_image *= 256
if FLAGS.summary_verbosity >= 2:
tf.summary.image(
'final_distorted_image',
tf.expand_dims(distorted_image, 0))
return distorted_image
def distort_color(image, batch_position=0, scope=None):
"""Distort the color of the image.
Each color distortion is non-commutative and thus ordering of the color ops
matters. Ideally we would randomly permute the ordering of the color ops.
Rather then adding that level of complication, we select a distinct ordering
of color ops based on the position of the image in a batch.
Args:
image: Tensor containing single image.
batch_position: the position of the image in a batch. NOTE: this argument
can be an integer or a tensor
scope: Optional scope for op_scope.
Returns:
color-distorted image
"""
# with tf.op_scope([image], scope, 'distort_color'):
# with tf.name_scope(scope, 'distort_color', [image]):
with tf.name_scope(scope or 'distort_color'):
def distort_fn_0(image=image):
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
return image
def distort_fn_1(image=image):
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
return image
image = utils.smart_cond(batch_position % 2 == 0, distort_fn_0,
distort_fn_1)
# The random_* ops do not necessarily clamp.
image = tf.clip_by_value(image, 0.0, 1.0)
return image
class RecordInputImagePreprocessor(object):
"""Preprocessor for images with RecordInput format."""
def __init__(self,
height,
width,
batch_size,
num_splits,
dtype,
train,
distortions,
resize_method,
shift_ratio):
self.height = height
self.width = width
self.batch_size = batch_size
self.num_splits = num_splits
self.dtype = dtype
self.train = train
self.resize_method = resize_method
self.shift_ratio = shift_ratio
self.distortions = distortions
if self.batch_size % self.num_splits != 0:
raise ValueError(
('batch_size must be a multiple of num_splits: '
'batch_size %d, num_splits: %d') %
(self.batch_size, self.num_splits))
self.batch_size_per_split = self.batch_size // self.num_splits
def preprocess(self, image_buffer, bbox, batch_position):
"""Preprocessing image_buffer as a function of its batch position."""
image = tf.image.decode_jpeg(image_buffer, channels=3,
dct_method='INTEGER_FAST')
if self.train:
image = train_image(image, self.height, self.width, bbox, batch_position,
self.resize_method, self.distortions)
else:
image = eval_image(image, self.height, self.width, batch_position,
self.resize_method)
# Note: image is now float32 [height,width,3] with range [0, 255]
# image = tf.cast(image, tf.uint8) # HACK TESTING
return image
def parse_and_preprocess(self, value, batch_position):
image_buffer, label_index, bbox, _ = parse_example_proto(value)
image = self.preprocess(image_buffer, bbox, batch_position)
return (label_index, image)
def minibatch(self, dataset, subset, use_data_sets):
with tf.name_scope('batch_processing'):
images = [[] for _ in range(self.num_splits)]
labels = [[] for _ in range(self.num_splits)]
if use_data_sets:
file_names = glob.glob(dataset.tf_record_pattern(subset))
ds = tf.contrib.data.TFRecordDataset(file_names)
counter = tf.contrib.data.Dataset.range(self.batch_size)
counter = counter.repeat()
ds = tf.contrib.data.Dataset.zip((ds, counter))
ds = ds.map(
self.parse_and_preprocess,
num_parallel_calls=self.batch_size,
output_buffer_size=self.batch_size)
ds = ds.shuffle(buffer_size=10000)
ds = ds.repeat()
ds = ds.batch(batch_size=(self.batch_size / self.num_splits))
ds_iterator = ds.make_one_shot_iterator()
for d in xrange(self.num_splits):
labels[d], images[d] = ds_iterator.get_next()
else:
# Build final results per split.
record_input = data_flow_ops.RecordInput(
file_pattern=dataset.tf_record_pattern(subset),
seed=301,
parallelism=64,
buffer_size=10000,
batch_size=self.batch_size,
shift_ratio=self.shift_ratio,
name='record_input')
records = record_input.get_yield_op()
records = tf.split(records, self.batch_size, 0)
records = [tf.reshape(record, []) for record in records]
for idx in xrange(self.batch_size):
value = records[idx]
(label_index, image) = self.parse_and_preprocess(value, idx)
split_index = idx % self.num_splits
images[split_index].append(image)
labels[split_index].append(label_index)
label_index_batch = [None] * self.num_splits
for split_index in xrange(self.num_splits):
if use_data_sets:
label_index_batch[split_index] = labels[split_index]
else:
images[split_index] = tf.parallel_stack(images[split_index])
label_index_batch[split_index] = tf.concat(labels[split_index], 0)
images[split_index] = tf.cast(images[split_index], self.dtype)
depth = 3
images[split_index] = tf.reshape(
images[split_index],
shape=[self.batch_size_per_split, self.height, self.width, depth])
label_index_batch[split_index] = tf.reshape(
label_index_batch[split_index], [self.batch_size_per_split])
return images, label_index_batch
class Cifar10ImagePreprocessor(object):
"""Preprocessor for Cifar10 input images."""
def __init__(self,
height,
width,
batch_size,
num_splits,
dtype,
train,
distortions,
resize_method,
shift_ratio):
# Process images of this size. Depending on the model configuration, the
# size of the input layer might differ from the original size of 32 x 32.
self.height = height or 32
self.width = width or 32
self.depth = 3
self.batch_size = batch_size
self.num_splits = num_splits
self.dtype = dtype
self.train = train
self.distortions = distortions
del resize_method
del shift_ratio # unused, because a RecordInput is not used
if self.batch_size % self.num_splits != 0:
raise ValueError(
('batch_size must be a multiple of num_splits: '
'batch_size %d, num_splits: %d') %
(self.batch_size, self.num_splits))
self.batch_size_per_split = self.batch_size // self.num_splits
def _distort_image(self, image):
"""Distort one image for training a network.
Adopted the standard data augmentation scheme that is widely used for
this dataset: the images are first zero-padded with 4 pixels on each side,
then randomly cropped to again produce distorted images; half of the images
are then horizontally mirrored.
Args:
image: input image.
Returns:
distored image.
"""
image = tf.image.resize_image_with_crop_or_pad(
image, self.height + 8, self.width + 8)
distorted_image = tf.random_crop(image,
[self.height, self.width, self.depth])
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
if FLAGS.summary_verbosity >= 2:
tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0))
return distorted_image
def _eval_image(self, image):
"""Get the image for model evaluation."""
distorted_image = tf.image.resize_image_with_crop_or_pad(
image, self.width, self.height)
if FLAGS.summary_verbosity >= 2:
tf.summary.image('cropped.image', tf.expand_dims(distorted_image, 0))
return distorted_image
def preprocess(self, raw_image):
"""Preprocessing raw image."""
if FLAGS.summary_verbosity >= 2:
tf.summary.image('raw.image', tf.expand_dims(raw_image, 0))
if self.train and self.distortions:
image = self._distort_image(raw_image)
else:
image = self._eval_image(raw_image)
return image
def minibatch(self, dataset, subset, use_data_sets):
# TODO(jsimsa): Implement data sets code path
del use_data_sets
with tf.name_scope('batch_processing'):
all_images, all_labels = dataset.read_data_files(subset)
all_images = tf.constant(all_images)
all_labels = tf.constant(all_labels)
input_image, input_label = tf.train.slice_input_producer(
[all_images, all_labels])
input_image = tf.cast(input_image, self.dtype)
input_label = tf.cast(input_label, tf.int32)
# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(dataset.num_examples_per_epoch(subset) *
min_fraction_of_examples_in_queue)
raw_images, raw_labels = tf.train.shuffle_batch(
[input_image, input_label], batch_size=self.batch_size,
capacity=min_queue_examples + 3 * self.batch_size,
min_after_dequeue=min_queue_examples)
images = [[] for i in range(self.num_splits)]
labels = [[] for i in range(self.num_splits)]
# Create a list of size batch_size, each containing one image of the
# batch. Without the unstack call, raw_images[i] would still access the
# same image via a strided_slice op, but would be slower.
raw_images = tf.unstack(raw_images, axis=0)
raw_labels = tf.unstack(raw_labels, axis=0)
for i in xrange(self.batch_size):
split_index = i % self.num_splits
# The raw image read from data has the format [depth, height, width]
# reshape to the format returned by minibatch.
raw_image = tf.reshape(raw_images[i],
[dataset.depth, dataset.height, dataset.width])
raw_image = tf.transpose(raw_image, [1, 2, 0])
image = self.preprocess(raw_image)
images[split_index].append(image)
labels[split_index].append(raw_labels[i])
for split_index in xrange(self.num_splits):
images[split_index] = tf.parallel_stack(images[split_index])
labels[split_index] = tf.parallel_stack(labels[split_index])
return images, labels
class SyntheticImagePreprocessor(object):
"""Preprocessor used for images and labels."""
def __init__(self, height, width, batch_size, num_splits,
dtype, train, distortions, resize_method, shift_ratio):
del train, distortions, resize_method, shift_ratio
self.batch_size = batch_size
self.height = height
self.width = width
self.depth = 3
self.dtype = dtype
self.num_splits = num_splits
def minibatch(self, dataset, subset, use_data_sets):
"""Get synthetic image batches."""
del subset, use_data_sets
input_shape = [self.batch_size, self.height, self.width, self.depth]
images = tf.truncated_normal(
input_shape,
dtype=self.dtype,
stddev=1e-1,
name='synthetic_images')
labels = tf.random_uniform(
[self.batch_size],
minval=0,
maxval=dataset.num_classes - 1,
dtype=tf.int32,
name='synthetic_labels')
# Note: This results in a H2D copy, but no computation
# Note: This avoids recomputation of the random values, but still
# results in a H2D copy.
images = tf.contrib.framework.local_variable(images, name='images')
labels = tf.contrib.framework.local_variable(labels, name='labels')
if self.num_splits == 1:
images_splits = [images]
labels_splits = [labels]
else:
images_splits = tf.split(images, self.num_splits, 0)
labels_splits = tf.split(labels, self.num_splits, 0)
return images_splits, labels_splits
class TestImagePreprocessor(object):
"""Preprocessor used for testing.
set_fake_data() sets which images and labels will be output by minibatch(),
and must be called before minibatch(). This allows tests to easily specify
a set of images to use for training, without having to create any files.
Queue runners must be started for this preprocessor to work.
"""
def __init__(self,
height,
width,
batch_size,
num_splits,
dtype,
train=None,
distortions=None,
resize_method=None,
shift_ratio=0):
del height, width, train, distortions, resize_method, shift_ratio
self.batch_size = batch_size
self.num_splits = num_splits
self.dtype = dtype
self.expected_subset = None
def set_fake_data(self, fake_images, fake_labels):
assert len(fake_images.shape) == 4
assert len(fake_labels.shape) == 1
assert fake_images.shape[0] == fake_labels.shape[0]
assert fake_images.shape[0] % self.batch_size == 0
self.fake_images = fake_images
self.fake_labels = fake_labels
def minibatch(self, dataset, subset, use_data_sets):
del dataset, use_data_sets
if (not hasattr(self, 'fake_images') or
not hasattr(self, 'fake_labels')):
raise ValueError('Must call set_fake_data() before calling minibatch '
'on TestImagePreprocessor')
if self.expected_subset is not None:
assert subset == self.expected_subset
with tf.name_scope('batch_processing'):
image_slice, label_slice = tf.train.slice_input_producer(
[self.fake_images, self.fake_labels],
shuffle=False,
name='image_slice')
raw_images, raw_labels = tf.train.batch(
[image_slice, label_slice], batch_size=self.batch_size,
name='image_batch')
images = [[] for _ in range(self.num_splits)]
labels = [[] for _ in range(self.num_splits)]
for i in xrange(self.batch_size):
split_index = i % self.num_splits
raw_image = tf.cast(raw_images[i], self.dtype)
images[split_index].append(raw_image)
labels[split_index].append(raw_labels[i])
for split_index in xrange(self.num_splits):
images[split_index] = tf.parallel_stack(images[split_index])
labels[split_index] = tf.parallel_stack(labels[split_index])
return images, labels