-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathdocred_reader.py
414 lines (349 loc) · 19.6 KB
/
docred_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# Copyright 2021 Neural Networks and Deep Learning lab, MIPT
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import json
import os
import random
from logging import getLogger
from pathlib import Path
from typing import Dict, List, Tuple, Union
import numpy as np
import pandas as pd
from deeppavlov.core.commands.utils import expand_path
from deeppavlov.core.common.registry import register
from deeppavlov.core.data.dataset_reader import DatasetReader
logger = getLogger(__name__)
@register('docred_reader')
class DocREDDatasetReader(DatasetReader):
""" Class to read the datasets in DocRED format"""
def read(
self,
data_path: str,
rel2id_path: str,
rel_info_path: str,
negative_label: str = "Na",
train_valid_test_proportion: int = None,
valid_test_data_size: int = None,
generate_additional_neg_samples: bool = False,
num_neg_samples: int = None
) -> Dict[str, List[Tuple]]:
"""
This class processes the DocRED relation extraction dataset (https://arxiv.org/abs/1906.06127v3).
Args:
data_path: a path to a folder with dataset files.
rel2id_path: a path to a file where information about relation to relation id corresponding is stored.
rel_info_path: a path to a file where information about relations and their real names is stored
negative_label: a label which will be used as a negative one (by default in DocRED: "Na")
train_valid_test_proportion: a proportion in which the data will be splitted into train, valid and test sets
valid_test_data_size: absolute amount of dev & test sets
generate_additional_neg_samples: boolean; whether to generate additional negative samples or not.
num_neg_samples: a number of additional negative samples that will be generated for each positive sample.
Returns:
DocRED output dictionary in the following format:
{"data_type":
List[
Tuple(
List[
List[all tokens of the document],
List[
List[Tuple(start pos of mention 1 of ent 1, end pos of mention 1 of ent 1), ...],
List[Tuple(start position of entity 2, end position of entity 2), ...],
List[str(NER tag of entity 1), str(NER tag of entity 2)]
],
List(int(one-hot encoded relation label))
)
]
}
"""
with open(str(expand_path(rel2id_path))) as file:
self.rel2id = json.load(file)
self.id2rel = {value: key for key, value in self.rel2id.items()}
with open(str(expand_path(rel_info_path))) as file:
self.relid2rel = json.load(file)
self.rel2relid = {value: key for key, value in self.relid2rel.items()}
self.negative_label = negative_label
self.if_add_neg_samples = generate_additional_neg_samples
self.num_neg_samples = num_neg_samples
if self.if_add_neg_samples and not self.num_neg_samples:
raise ValueError("Please provide a number of negative samples to be generated!")
if train_valid_test_proportion and valid_test_data_size:
raise ValueError(
f"The train, valid and test splitting should be done either basing on their proportional values to each"
f"other (train_valid_test_proportion parameter), or on the absolute size of valid and test data "
f"(valid_test_data_size parameter). They can't be used simultaneously."
)
self.train_valid_test_proportion = train_valid_test_proportion
self.valid_test_data_size = valid_test_data_size
data_path = Path(data_path).resolve()
with open(os.path.join(data_path, "train_annotated.json")) as file_ann:
train_data = json.load(file_ann)
with open(os.path.join(data_path, "dev.json")) as file:
valid_data = json.load(file)
# if you want to use test data from the original docred without labels (e.g. as negatives...),
# uncomment lines below
# with open(os.path.join(data_path, "test.json")) as file:
# test_data = json.load(file)
# test_processed = self.process_docred_file(test_data, neg_samples=None)
# merge valid and train data and split them again into train, valid & test
if self.train_valid_test_proportion:
train_data, test_data, valid_data = self.split_by_relative(list(train_data + valid_data))
elif self.valid_test_data_size:
train_data, test_data, valid_data = self.split_by_absolute(list(train_data + valid_data))
else:
raise ValueError(
f"The train, valid and test splitting should be done either basing on their proportional values to each"
f"other (train_valid_test_proportion parameter), or on the absolute size of valid and test data "
f"(valid_test_data_size parameter). One of them should be set to the not-None value."
)
logger.info("Train data processing...")
train_data, train_stat = self.process_docred_file(train_data, neg_samples="twice")
logger.info("Valid data processing...")
valid_data, valid_stat = self.process_docred_file(valid_data, neg_samples="equal")
logger.info("Test data processing...")
test_data, test_stat = self.process_docred_file(test_data, neg_samples="equal")
self.print_statistics(train_stat, valid_stat, test_stat)
data = {"train": train_data, "valid": valid_data, "test": test_data}
return data
def split_by_absolute(self, all_labeled_data: List) -> Tuple[List, List, List]:
"""
All annotated data from DocRED is splitted into train, valid and test sets in following proportions:
len(valid_data) = len(test_data) = self.valid_test_data_size
len(train_data) = len(all data) - 2 * self.valid_test_data_size
Args:
all_labeled_data: List of all annotated data samples
Return:
Lists of train, valid and test data
"""
if (int(self.valid_test_data_size) * 3) > len(all_labeled_data):
raise ValueError(
f"The dataset size {len(all_labeled_data)} is too small for taking {self.valid_test_data_size} samples"
f"for valid and test. Reduce the size of valid and test set."
)
random.shuffle(all_labeled_data)
valid_data = all_labeled_data[:int(self.valid_test_data_size)]
test_data = all_labeled_data[int(self.valid_test_data_size) + 1: 2 * int(self.valid_test_data_size)]
train_data = all_labeled_data[2 * int(self.valid_test_data_size) + 1:]
return train_data, valid_data, test_data
def split_by_relative(self, all_labeled_data: List) -> Tuple[List, List, List]:
"""
All annotated data from DocRED is splitted into train, valid and test sets in following proportions:
len(train_data) = train_valid_test_proportion * len(valid_data) = train_valid_test_proportion * len(test_data)
"""
random.shuffle(all_labeled_data)
one_prop = int(len(all_labeled_data)/int(self.train_valid_test_proportion))
valid_data = all_labeled_data[:one_prop]
test_data = all_labeled_data[one_prop + 1: 2 * one_prop]
train_data = all_labeled_data[2 * one_prop + 1:]
return train_data, valid_data, test_data
def process_docred_file(self, data: List[Dict], neg_samples: str = None) -> Tuple[List, Dict]:
"""
Processes a DocRED data and returns a DeepPavlov relevant output
Args:
data: List of data units
neg_samples: how many negative samples are to be generated
Possible values:
- None: no negative samples will be generated
(relevant to the test set which has from neg samples only)
- equal: there will be one negative sample pro positive sample
- twice: there will be twice as many negative samples as positive ones
- thrice: there will be thrice as many negative samples as positive ones
Returns:
one list of processed documents
"""
stat_rel_name = {rel_name: 0 for _, rel_name in self.relid2rel.items()}
self.stat = {"POS_REL": 0, "NEG_REL": 0} # collect statistics of positive and negative samples
processed_data_samples = []
for data_unit in data:
ent_ids2ent_pos, ent_ids2ent_text, ent_ids2ent_tag = {}, {}, {}
# get list of all tokens from the document
doc = [token for sent in data_unit["sents"] for token in sent]
# the sentence start indices are needed for entities' indices recalculation to the whole text
sents_begins = list(np.cumsum([0] + [len(sent) for sent in data_unit["sents"]]))
for ent_set_id, ent_set in enumerate(data_unit["vertexSet"]):
ent_ids2ent_pos[ent_set_id], ent_ids2ent_text[ent_set_id], ent_ids2ent_tag[ent_set_id] = [], [], []
for ent in ent_set:
# the list of tuples with each entity's new indices (recalculated regarding to the whole doc)
ent_ids2ent_pos[ent_set_id].append(
((ent["pos"][0] + sents_begins[ent["sent_id"]]),
(ent["pos"][1] + sents_begins[ent["sent_id"]]))
)
# also save entity id to entity as exact text mentions correspondence
ent_ids2ent_text[ent_set_id].append(ent["name"])
# get the sample NER tag (logically, the same for all entity mentions)
ent_ids2ent_tag[ent_set_id] = ent_set[0]["type"]
ent_ids2ent_text[ent_set_id] = list(set(ent_ids2ent_text[ent_set_id]))
# if no labels are provided for the data, handle all samples as negative ones
if "labels" not in data_unit:
processed_data_samples += self.construct_neg_samples(ent_ids2ent_pos, ent_ids2ent_tag, doc)
# if labels are provided, save samples as positive samples and generate negatives
else:
labels = data_unit["labels"]
curr_processed_data_samples, stat_rel_name = self.construct_pos_neg_samples(
labels, ent_ids2ent_pos, ent_ids2ent_tag, doc, stat_rel_name, neg_samples=neg_samples,
)
processed_data_samples += curr_processed_data_samples
logger.info(f"Pos samples: {self.stat['POS_REL']} Neg samples: {self.stat['NEG_REL']}.")
self.stat.pop("POS_REL")
self.stat.pop("NEG_REL")
return processed_data_samples, stat_rel_name
def construct_pos_neg_samples(
self, labels: List, ent_id2ent: Dict, ent_id2ent_tag: Dict, doc: List, stat_rel: Dict, neg_samples: str,
) -> Tuple[List, Dict]:
"""
Transforms the relevant information into an entry of the DocRED reader output. The entities between which
the relation is hold will serve as an annotation for positive samples, while all other entity pairs will be
used to construct the negative samples.
Args:
labels: information about relation found in a document (whole labels list of the original DocRED)
ent_id2ent: a dictionary {entity id: [entity mentions' positions]}
stat_rel: a dictionary with relation statistics (will be updated)
neg_samples: amount of negative samples that are to be generated
ent_id2ent_tag: a dictionary {entity id: entity NER tag}
doc: list of all tokens of the document
Returns:
a tuple with list of all doc tokens, entity information (positions & NER tags) and relation.
"""
num_pos_samples, num_neg_samples = 0, 0
data_samples = []
rel_triples = {}
for label_info in labels:
entity1_id, entity2_id = label_info["h"], label_info["t"]
if (entity1_id, entity2_id) in rel_triples:
rel_triples[(entity1_id, entity2_id)].append(self.rel2id[label_info['r']])
else:
rel_triples[(entity1_id, entity2_id)] = [self.rel2id[label_info['r']]]
# the one hot encoding of the negative label
neg_label_one_hot = self.label_to_one_hot([self.rel2id[self.negative_label]])
# iterate over all entities
for (ent1, ent2) in itertools.permutations(ent_id2ent, 2):
# if there is a relation hold between entities, save them (and a corresponding sample) as positive one
if (ent1, ent2) in rel_triples:
num_pos_samples += 1
labels = rel_triples[(ent1, ent2)]
label_one_hot = self.label_to_one_hot(labels)
data_samples.append(
self.generate_data_sample(doc, ent1, ent2, label_one_hot, ent_id2ent, ent_id2ent_tag)
)
self.stat["POS_REL"] += 1
for label in labels:
rel_name = self.relid2rel[self.id2rel[label]]
stat_rel[rel_name] += 1
else:
if not neg_samples: # if no negative samples should be generated, skip
continue
# if there is no relation hold between entities, save them (and a corresponding sample) as negative one
if neg_samples == "equal" and num_neg_samples < num_pos_samples:
num_neg_samples += 1
data_samples.append(
self.generate_data_sample(doc, ent1, ent2, neg_label_one_hot, ent_id2ent, ent_id2ent_tag)
)
self.stat["NEG_REL"] += 1
elif neg_samples == "twice" and num_neg_samples < 2 * num_pos_samples:
num_neg_samples += 1
data_samples.append(
self.generate_data_sample(doc, ent1, ent2, neg_label_one_hot, ent_id2ent, ent_id2ent_tag)
)
self.stat["NEG_REL"] += 1
elif neg_samples == "thrice" and num_neg_samples < 3 * num_pos_samples:
num_neg_samples += 1
data_samples.append(
self.generate_data_sample(doc, ent1, ent2, neg_label_one_hot, ent_id2ent, ent_id2ent_tag)
)
self.stat["NEG_REL"] += 1
return data_samples, stat_rel
def construct_neg_samples(
self, ent_id2ent: Dict, ent_id2ent_tag: Dict, doc: List
) -> List[Tuple[Tuple[List, List], List]]:
"""
Turn the annotated documents but without any positive relation label to the negative samples in a format of
the DocRED reader output.
Args:
ent_id2ent: a dictionary {entity id: [entity mentions' positions]}
ent_id2ent_tag: a dictionary {entity id: entity NER tag}
doc: list of all tokens of the document
Returns:
a tuple with list of all doc tokens, entity information (positions & NER tags) and relation (=neg_label).
"""
neg_data_samples = []
neg_label_one_hot = self.label_to_one_hot([self.rel2id[self.negative_label]])
for ent1, ent2 in itertools.permutations(ent_id2ent.keys(), 2):
neg_data_samples.append(
self.generate_data_sample(doc, ent1, ent2, neg_label_one_hot, ent_id2ent, ent_id2ent_tag)
)
self.stat["NEG_REL"] += 1
return neg_data_samples
@staticmethod
def generate_data_sample(
doc: List, ent1: int, ent2: int, label: List, ent_id2ent: Dict, ent_id2ent_tag: Dict
) -> Tuple[List[Union[List, List]], List]:
""" Creates an entry of processed docred corpus """
return (
[
doc,
[ent_id2ent[ent1], ent_id2ent[ent2]],
[ent_id2ent_tag[ent1], ent_id2ent_tag[ent2]]
],
label
)
def generate_additional_neg_samples(self, doc: List, forbidden_entities: List, num_neg_samples: int):
"""
<CURRENTLY NOT USED>
Generated negative samples, i.e. the same document that is used for positive samples, but labeled with
"no_relation" label and with entities, that are not connected with any relation, marked as such.
Args:
doc: list of positive sentences
forbidden_entities: list of entities that participate in any of the relations (and, therefore, cannot be
chosen for negative sample)
num_neg_samples: number of negative samples that are to be generated out of this document
Returns:
a tuple with list of all doc tokens, entity information (positions & NER tags) and relation (=neg_label).
"""
# ATTENTION! To make it work, please run the following command: python3 -m deeppavlov install ner_ontonotes_bert
from deeppavlov import build_model, configs
ner = build_model(configs.ner.ner_ontonotes_bert_mult, download=True)
neg_data_samples = []
analysed_sentences = ner([" ".join(doc)]) # returns [[[tokens]], [[ner tags]]]
# select ids of tokens that were not part of any relation so far
neg_entities_idx = random.sample(
[ent_idx for ent_idx in range(len(analysed_sentences[0][0]))
if analysed_sentences[0][0][ent_idx] not in forbidden_entities],
num_neg_samples * 2
)
# the one hot encoding of the negative label
neg_label_one_hot = self.label_to_one_hot([self.rel2id[self.negative_label]])
for n_ent_1_idx, n_ent_2_idx in itertools.permutations(neg_entities_idx, 2):
# if already sufficient number of negative samples have been generated
if len(neg_data_samples) == num_neg_samples:
break
neg_entity_1 = analysed_sentences[0][0][n_ent_1_idx]
neg_entity_2 = analysed_sentences[0][0][n_ent_2_idx]
neg_entity_1_tag = analysed_sentences[1][0][n_ent_1_idx]
neg_entity_2_tag = analysed_sentences[1][0][n_ent_2_idx]
neg_data_samples.append(
(doc, [[neg_entity_1], [neg_entity_2], neg_entity_1_tag, neg_entity_2_tag], neg_label_one_hot)
)
self.stat["NEG_REL"] += 1
return neg_data_samples
def label_to_one_hot(self, labels: List[int]) -> List:
""" Turn labels to one hot encodings """
relation = [0] * len(self.rel2id)
for label in labels:
relation[label] = 1
return relation
def print_statistics(self, train_stat: Dict, valid_stat: Dict, test_stat: Dict) -> None:
""" Print out the relation statistics as a markdown table """
df = pd.DataFrame([self.rel2relid, train_stat, valid_stat, test_stat]).T
df.columns = ['d{}'.format(i) for i, col in enumerate(df, 1)]
logger.info("\n")
logger.info(df)