-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathK_means.r
95 lines (73 loc) · 2.96 KB
/
K_means.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
### K-Means Algoritması
# Load required libraries
library(cluster)
library(factoextra)
library(caret)
library(ggplot2)
# Read data from CSV file
wholesale <- read.csv("/home/yorgun/r_tube/Rcode/knn/Wholesale_customers_data.csv")
#wholesale <- read.csv("wholesale_customers_data.csv")
View(wholesale)
# Preprocess data for outliers
scaleModel <- preProcess(wholesale, method = c("center", "scale"))
modelData <- predict(scaleModel, wholesale)
View(modelData)
# Check for missing values
library(mice)
md.pattern(modelData)
# Create clustering model
clusterModel <- kmeans(modelData, centers = 4, iter.max = 15, nstart = 15)
clusterModel
fittedCluster <- fitted(clusterModel)
View(fittedCluster)
# Explore clusters
library(tidyverse)
#%>% pipeline
reversedData <- modelData %>%
select(one_of(scaleModel$mean %>% names)) %>%
map2_df(scaleModel$std, function(sd, var) {var * sd}) %>%
map2_df(scaleModel$mean, function(mu, var) {var + mu})
View(reversedData)
reversedData$cluster <- clusterModel$cluster
reversedData %>% group_by(cluster) %>% summarise_all(mean)
#FRESH: Annual spending on fresh products
#MILK: Annual spending on milk products
#GROCERY: Annual spending on grocery products
#FROZEN: Annual spending on frozen products
#DETERGENTS_PAPER: Annual spending on detergents and paper products
#DELICATESSEN: Annual spending on delicatessen products
#CHANNEL: Type of channel where the customer operates, either Hotel/Restaurant/Cafe or Retail (Nominal)
#REGION: Customer region, which can be Lisbon, Oporto, or Other (Nominal),
# Visualize clusters
boxplot(Fresh ~ cluster, data = reversedData)
boxplot(Milk ~ cluster, data = reversedData)
fviz_cluster(clusterModel, data = modelData)
clusterModel$withinss
clusterModel$tot.withinss
# Determine optimal K (number of clusters)
wss <- sapply(2:10, FUN = function(x) {
kmeans(modelData, centers = x, nstart = 10, iter.max = 15)$tot.withinss
})
plot(2:10, wss, type = "b")
# Optimal K using Elbow method
fviz_nbclust(modelData, kmeans, method = "wss")
# Optimal K using Silhouette method
silhouette(clusterModel$cluster , dist(modelData))
silScore <- function(x) {
model <- kmeans(modelData, centers = x, nstart = 10, iter.max = 15)
sil <- silhouette(model$cluster, dist(modelData))[, 3]
score <- mean(sil)
return(score)
}
scores <- sapply(2:10, FUN = silScore)
plot(2:10, scores, type = "b")
fviz_nbclust(modelData, kmeans, method = "silhouette")
# Create clustering models with optimal K
clusterModelK2 <- kmeans(modelData, centers = 2, nstart = 50, iter.max = 20)
clusterModelK3 <- kmeans(modelData, centers = 3, nstart = 50, iter.max = 20)
fviz_cluster(clusterModelK2, modelData)
fviz_cluster(clusterModelK3, modelData)
reversedData$clusterK2 <- clusterModelK2$cluster
reversedData$clusterK3 <- clusterModelK3$cluster
reversedData %>% group_by(clusterK2) %>% summarise_all(mean)
reversedData %>% group_by(clusterK3) %>% summarise_all(mean)