-
awesome-python – A curated list of awesome Python frameworks, libraries, software and resources
-
Data Analysis Tutorials – Python Programming tutorials from beginner to advanced on a massive variety of topics. All video and text tutorials are free
-
Dive into Machine Learning with Python Jupyter notebook and scikit-learn
-
How to Think Like a Computer Scientist: Learning with Python, Interactive Edition
-
Intro to Python for Data Science – основы Python и немного про NumPy
-
mlpy – Python module for Machine Learning built on top of NumPy/Scipy and the GNU Scientific Libraries
-
Notebooks and code for the book "Introduction to Machine Learning with Python"
-
The python-machine-learning-book code repository and info resource
-
py_ml_utils – small utility modules to help with pandas, numpy and sklearn usage in other projects
-
python_reference – Useful functions, tutorials, and other Python-related things
-
Pythonpedia – энциклопедия ресурсов по программированию на Python
-
WinPython – дистрибутив питона и научных библиотек (+Jupyter, +Spyder) для Windows 7/8/10
-
Семинары по программированию на Python для 3 курса Школы Лингвистики НИУ ВШЭ
-
IPython
- algorithms_in_ipython_notebooks – A repository with IPython notebooks of algorithms implemented in Python
- Data Science IPython Notebooks on Deep learning (TensorFlow, Theano, Caffe), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, Scipy, Python essentials, AWS, and various command lines.
- Очень большой список интересных питоновских ноутбуков (от туториалов на три минуты, до целых книг (!) в таком формате)
-
Scipy
-
Numpy
-
Sklearn
-
Pandas
-
Matplotlib
- PyCharm от JetBrains - серьезная IDE для больших проектов
- Spyder – the Scientific PYthon Development EnviRonment. Spyder входит в Анаконду (просто введите
spyder
в командной строке) - Canopy — scientific and analytic Python deployment with integrated analysis environment (рекомендуют в курсе MITx)
- Rodeo — a data science IDE for Python
- Jupyter – open source, interactive data science and scientific computing across over 40 programming languages. The Jupyter Notebook is a web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text
- nbviewer – renders notebooks available on other websites
- Sublime Text 3
- PyCharm vs Sublime Text – a blog post comparing these two popular development tools and text editors
- PEP 0008 – Style Guide for Python Code