This repository has been archived by the owner on Jun 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
244 lines (191 loc) · 8.62 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# %% Imports
import random
from sklearn.metrics import accuracy_score, f1_score, classification_report
import xgboost as xgb
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# %% Read in dataset.
data = pd.read_csv("impstroke.csv")
data.drop('Unnamed: 0', axis=1, inplace=True)
data.head()
# %% Split data
X = data.drop("stroke", axis=1)
y = data["stroke"]
X.head()
# y.head()
# %% Test Train Split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.20, random_state=97)
X_train.head()
# %%
model = xgb.XGBClassifier(verbosity=0)
model.fit(X_train, y_train)
print("f1_score:", f1_score(y_test, model.predict(X_test)))
print("Accuracy:", accuracy_score(y_test, model.predict(X_test)))
print(classification_report(y_test, model.predict(X_test)))
# %% GA Code
random.seed(723)
np.random.seed(723)
def initilialize_poplulation(numberOfParents):
learningRate = np.empty([numberOfParents, 1])
nEstimators = np.empty([numberOfParents, 1], dtype=np.uint8)
maxDepth = np.empty([numberOfParents, 1], dtype=np.uint8)
minChildWeight = np.empty([numberOfParents, 1])
gammaValue = np.empty([numberOfParents, 1])
subSample = np.empty([numberOfParents, 1])
colSampleByTree = np.empty([numberOfParents, 1])
for i in range(numberOfParents):
# print(i)
learningRate[i] = round(random.uniform(0.01, 1), 2)
nEstimators[i] = random.randrange(10, 1500, step=25)
maxDepth[i] = int(random.randrange(1, 10, step=1))
minChildWeight[i] = round(random.uniform(0.01, 10.0), 2)
gammaValue[i] = round(random.uniform(0.01, 10.0), 2)
subSample[i] = round(random.uniform(0.01, 1.0), 2)
colSampleByTree[i] = round(random.uniform(0.01, 1.0), 2)
population = np.concatenate((learningRate, nEstimators, maxDepth,
minChildWeight, gammaValue, subSample, colSampleByTree), axis=1)
return population
def fitness_score(y_true, y_pred):
fitness = round((f1_score(y_true, y_pred)), 4)
# fitness = round((accuracy_score(y_true, y_pred)), 4)
return fitness
def train_population(population, dMatrixTrain, dMatrixtest, y_test):
aScore = []
for i in range(population.shape[0]):
param = {'objective': 'binary:logistic',
'learning_rate': population[i][0],
'n_estimators': population[i][1],
'max_depth': int(population[i][2]),
'min_child_weight': population[i][3],
'gamma': population[i][4],
'subsample': population[i][5],
'colsample_bytree': population[i][6],
'seed': 24}
num_round = 100
xgbT = xgb.train(param, dMatrixTrain, num_round)
preds = xgbT.predict(dMatrixtest)
preds = preds > 0.5
aScore.append(fitness_score(y_test, preds))
return aScore
def new_parents_selection(population, fitness, numParents):
selectedParents = np.empty((numParents, population.shape[1]))
for parentId in range(numParents):
bestFitnessId = np.where(fitness == np.max(fitness))
bestFitnessId = bestFitnessId[0][0]
selectedParents[parentId, :] = population[bestFitnessId, :]
fitness[bestFitnessId] = -1
return selectedParents
def crossover_uniform(parents, childrenSize):
crossoverPointIndex = np.arange(
0, np.uint8(childrenSize[1]), 1, dtype=np.uint8)
crossoverPointIndex1 = np.random.randint(
0, np.uint8(childrenSize[1]), np.uint8(childrenSize[1]/2))
crossoverPointIndex2 = np.array(
list(set(crossoverPointIndex) - set(crossoverPointIndex1)))
children = np.empty(childrenSize)
for i in range(childrenSize[0]):
parent1_index = i % parents.shape[0]
parent2_index = (i+1) % parents.shape[0]
children[i, crossoverPointIndex1] = parents[parent1_index,
crossoverPointIndex1]
children[i, crossoverPointIndex2] = parents[parent2_index,
crossoverPointIndex2]
return children
def mutation(crossover, numberOfParameters, selectedParentsStats):
mutation = crossover.tolist() #The array of array of hyper-parameters
mutationPercentage = .25 #Hard coded, the percentage of children to mutate
#The total length of the hyper-parameter array is the numberOfParameters
counterLoopMutation = 0
for i in mutation:
percentageCheck = round(random.random(),3)
if percentageCheck < mutationPercentage:
mutation.pop(counterLoopMutation)
newHyperparameterArray = []
#Hyper-parameter 0
newParameter0 = round(random.uniform(0.01, 1), 2)
newHyperparameterArray.append(newParameter0)
#Hyper-parameter 1
newParameter1 = random.randrange(10, 1500, step=25)
newHyperparameterArray.append(newParameter1)
#Hyper-parameter 2
newParameter2 = int(random.randrange(1, 10, step=1))
newHyperparameterArray.append(newParameter2)
#Hyper-parameter 3
newParameter3 = round(random.uniform(0.01, 10.0), 2)
newHyperparameterArray.append(newParameter3)
#Hyper-parameter 4
newParameter4 = round(random.uniform(0.01, 10.0), 2)
newHyperparameterArray.append(newParameter4)
#Hyper-parameter 5
newParameter5 = round(random.uniform(0.01, 1.0), 2)
newHyperparameterArray.append(newParameter5)
#Hyper-parameter 6
newParameter6 = round(random.uniform(0.01, 1.0), 2)
newHyperparameterArray.append(newParameter6)
mutation.append(newHyperparameterArray)
counterLoopMutation = counterLoopMutation + 1
mutation2 = []
for i in range(len(mutation)):
mutation2.append(np.array(mutation[i]))
mutation3 = np.array(mutation2)
return mutation3
# %%
xgDMatrix = xgb.DMatrix(X_train, y_train)
xgbDMatrixTest = xgb.DMatrix(X_test, y_test)
numberOfParents = 64
numberOfParentsMating = 32
numberOfParameters = 7
numberOfGenerations = 10
populationSize = (numberOfParents, numberOfParameters)
population = initilialize_poplulation(numberOfParents)
# print(population)
fitnessHistory = np.empty([numberOfGenerations+1, numberOfParents])
populationHistory = np.empty(
[(numberOfGenerations+1)*numberOfParents, numberOfParameters])
populationHistory[0:numberOfParents, :] = population
# feature_statistics = {
# 'mean': [],
# 'sd': []
# }
for generation in range(numberOfGenerations):
print("This is number %s generation" % (generation))
fitnessValue = train_population(
population=population, dMatrixTrain=xgDMatrix, dMatrixtest=xgbDMatrixTest, y_test=y_test)
fitnessHistory[generation, :] = fitnessValue
print('Best F1 score in the this iteration = {}'.format(
np.max(fitnessHistory[generation, :])))
# print('Best Accuracy score in the this iteration = {}'.format(
# np.max(fitnessHistory[generation, :])))
parents = new_parents_selection(
population=population, fitness=fitnessValue, numParents=numberOfParentsMating)
# print(parents)
# feature_statistics['mean'].append(np.mean(parents, axis=0))
# feature_statistics['sd'].append(np.std(parents, axis=0))
feature_statistics = {
'mean': np.mean(parents, axis=0),
'sd': np.std(parents, axis=0)
}
children = crossover_uniform(parents=parents, childrenSize=(
populationSize[0] - parents.shape[0], numberOfParameters))
children_mutated = mutation(children, numberOfParameters, feature_statistics)
population[0:parents.shape[0], :] = parents
population[parents.shape[0]:, :] = children_mutated
populationHistory[(generation+1)*numberOfParents: (generation+1)
* numberOfParents + numberOfParents, :] = population
fitness = train_population(
population=population, dMatrixTrain=xgDMatrix, dMatrixtest=xgbDMatrixTest, y_test=y_test)
fitnessHistory[generation+1, :] = fitness
bestFitnessIndex = np.where(fitness == np.max(fitness))[0][0]
print("Best fitness is =", fitness[bestFitnessIndex])
print("Best parameters are:")
print('learning_rate', population[bestFitnessIndex][0])
print('n_estimators', population[bestFitnessIndex][1])
print('max_depth', int(population[bestFitnessIndex][2]))
print('min_child_weight', population[bestFitnessIndex][3])
print('gamma', population[bestFitnessIndex][4])
print('subsample', population[bestFitnessIndex][5])
print('colsample_bytree', population[bestFitnessIndex][6])
# %%