-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
395 lines (276 loc) · 11.5 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "80%",
cache = FALSE
)
library(rpyANTs)
```
# rpyANTs
<!-- badges: start -->
[![CRAN status](https://www.r-pkg.org/badges/version/rpyANTs)](https://CRAN.R-project.org/package=rpyANTs)
[![r-universe](https://rave-ieeg.r-universe.dev/badges/rpyANTs)](https://rave-ieeg.r-universe.dev/rpyANTs)
[![R-check](https://github.com/dipterix/rpyANTs/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/dipterix/rpyANTs/actions/workflows/R-CMD-check.yaml)
<!-- badges: end -->
`rpyANTs` was detached from a `RAVE` ([Reproducible Analysis and Visualization of `iEEG`](https://rave.wiki)) module. It is now a standalone package that connects `ANTsPy` with R using seamless shared-memory.
This package was originally created for the following three purposes:
* Portability
- Make `ANTs` easily accessible from the latest R and all major operating systems
- Allow `RAVE` or other code/scripts/frameworks to be reproducible since the code will be OS-invariant
* Easy to install
- Automated installation that requires very little to no knowledge about compilers
- Installing `rpyANTs` takes less than 10 minutes
- The goal is to have minimum human intervention
* Easy to embed
- Python scripts using `ANTsPy` can be executed from `rpyANTs` and R with no modification
- Built-in bilateral data conversions between Python and R allows image generated from Python to be analyzed/visualized in R and vice versa
> Disclaimer: This is a third-party maintained R package for `ANTs`. If you are looking for the `ANTsR` package by `B.B Avants`, please check [here](https://github.com/ANTsX/ANTsR).
## Installation
The installation requires one-line extra setup
```r
# Install from CRAN
install.packages("rpyANTs")
# Install from nightly dev builder
# install.packages("rpyANTs", repos = "https://dipterix.r-universe.dev")
# set up ANTs
rpyANTs::install_ants()
```
`install_ants` creates an isolated `Python` environment managed by `RAVE`. This environment does not conflict nor affect your existing Python installations.
### Upgrade `ANTs`
To upgrade `ANTs`, first update `rpyANTs`, then upgrade `ANTsPyx`
```r
install.packages("rpyANTs")
rpymat::add_packages(packages = "antspyx", pip = TRUE)
```
## How to use
To load `ANTs`
```{r example1, eval = FALSE}
library(rpyANTs)
# Whether ANTs is available
ants_available()
# Load ANTs into R
ants
```
In R, we use `$` to get module functions or class members. For example:
```{r example2}
ants$add_noise_to_image
```
The following R code translates Python code into R:
```{r example3}
# >>> img = ants.image_read(ants.get_ants_data('r16'))
img <- ants$image_read(ants$get_ants_data('r16'))
# >>> noise_image1 = ants.add_noise_to_image(img, 'additivegaussian', (0.0, 1.0))
noise_image1 <- ants$add_noise_to_image(
img, 'additivegaussian',
noise_parameters = tuple(0.0, 1.0)
)
# >>> noise_image2 = ants.add_noise_to_image(img, 'saltandpepper', (0.1, 0.0, 100.0))
noise_image2 <- ants$add_noise_to_image(
img, 'saltandpepper',
noise_parameters = tuple(0.1, 0.0, 100.0)
)
# >>> noise_image3 = ants.add_noise_to_image(img, 'shot', 1.0)
noise_image3 <- ants$add_noise_to_image(
img, 'shot',
noise_parameters = 1.0
)
# >>> noise_image4 = ants.add_noise_to_image(img, 'speckle', 1.0)
noise_image4 <- ants$add_noise_to_image(
img, 'speckle',
noise_parameters = 1.0
)
# >>> trans = ants.create_ants_transform(
# >>> dimension=2, matrix=[[0.707, 0.707], [-.707, 0.707]],
# >>> translation=[-53, 128])
trans <- as_ANTsTransform(matrix(
c(0.707, 0.707, -53,
-0.707, 0.707, 128),
nrow = 2, byrow = TRUE
), dimension = 2)
# >>> noise_image4 = trans.apply_to_image(noise_image4)
noise_image4 <- trans$apply_to_image(noise_image4)
```
To load imaging data into R
```{r load-image-into-r, fig.width=6, fig.height=3}
# Use [] to convert ANTsImage into R array
is.array(img[])
# plot via R
layout(matrix(c(1,1,2,3,1,1,4,5), nrow = 2, byrow = TRUE))
par(mar = c(0.1, 0.1, 0.1, 0.1), bg = "black", fg = "white")
pal <- grDevices::gray.colors(256, start = 0, end = 1)
image(img[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
image(noise_image1[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
image(noise_image2[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
image(noise_image3[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
image(noise_image4[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
```
## Advanced use case
### Run/Debug `Python` scripts
`rpyANTs` ports functions that allows to run `Python` scripts. For example:
```{r}
library(rpyANTs)
script_path <- tempfile(fileext = ".py")
writeLines(con = script_path, text = r"(
# This is Python script
import ants
print(ants.__version__)
)")
run_script(script_path)
```
You can also run `Python` interactive in R (yes, you are correct). Simply run
```r
rpyANTs::repl_python()
```
The console prefix will change from `>` to `>>>`, meaning you are in `Python` mode:
```
> rpyANTs::repl_python()
Python 3.8.16 (/Users/dipterix/Library/r-rpymat/miniconda/envs/rpymat-conda-env/bin/python3.8)
Reticulate 1.26 REPL -- A Python interpreter in R.
Enter 'exit' or 'quit' to exit the REPL and return to R.
>>>
```
Try some Python code!
```
>>> import ants
>>> help(ants.registration)
```
To exit Python mode, type `exit` (no parenthesis) and hit enter key
```
>>> exit
>
```
### Data conversions
Native R variables can be easily converted to `Python` and back via `r_to_py` and `py_to_r`.
For example
```{r}
# R to Python
r_to_py(1)
r_to_py(1L)
# Python to R
py_obj <- py_list(1:3)
class(py_obj) # <- this is a python object
py_to_r(py_obj)
```
You can also use variables created in R from Python or vice versa:
In the following example, an R object `object_r` is created. In Python, it can be accessed (read-only) via `r.object_r`
```
> object_r <- c(1,2,3)
> repl_python()
Python 3.8.16 (/Users/dipterix/Library/r-rpymat/miniconda/envs/rpymat-conda-env/bin/python3.8)
Reticulate 1.26 REPL -- A Python interpreter in R.
Enter 'exit' or 'quit' to exit the REPL and return to R.
>>> r.object_r
[1.0, 2.0, 3.0]
```
Similarly, a Python object `object_py` is created, and it can be read from `py$object_py`:
```
>>> import numpy as np
>>> object_py = np.array([2,3,4])
>>> exit
> py$object_py
[1] 2 3 4
```
## Known issues
### Variable types
R is not a type-rigid language. Some functions in `ANTsPy` require specific variable types that are often vague in R. For example the `dimension` argument in function `ants$create_ants_transform` needs to be an integer, but R's default numerical values are `double`. In this case, variable formats need to be explicitly given.
Here are several examples
1. Explicit integers
```r
# ants$create_ants_transform(dimension = 3) # <- error
ants$create_ants_transform(dimension = 3L) # < XXXL is an explicit integer
```
2. `Tuple`, `list`, and `dictionary`
A Python `tuple` is a vector that cannot alter lengths.
```r
# Wrong as `aff_iterations` needs to be a tuple
# ants$registration(fixed, moving, ..., aff_iterations = c(6L, 4L, 2L, 1L))
ants$registration(fixed, moving, ..., aff_iterations = tuple(6L, 4L, 2L, 1L))
```
Similar conversions can be done via `py_list`, `py_dict`.
3. Convert `TRUE` vs. `FALSE`
A Python module can be imported with auto-conversion (argument `convert`) set to `TRUE` or `FALSE`. When auto-conversion is on, the Python function results will be converted to R objects automatically. For example,
```{r}
np <- import("numpy", convert = TRUE)
np$eye(4L)
```
The `numpy` array is automatically translated as an R matrix. While this is convenient, this automated conversion could cause some issues when the function results are further passed into another Python function. For example, the following code will raise errors.
```r
> np <- import("numpy", convert = TRUE)
> ants <- load_ants()
>
> image <- ants$image_read(ants$get_ants_data('mni'))
> image_array <- np$asarray(list(image, image))
>
> ants$plot_grid(image_array, slices = 100L)
Error in py_call_impl(callable, dots$args, dots$keywords) :
Matrix type cannot be converted to python (only integer, numeric, complex, logical, and character matrixes can be converted
```
The error is raised because `numpy` has `convert=TRUE`, hence `image_array` is converted to an R list with each element being a `ANTsImage` instance. Calling `ants$plot_grid` needs R-to-Python conversion for all input variables, including `image_array`. However this conversion makes `image_array` a Python list instead of `numpy` array, violating the input format.
A safer way is to keep in the Python format, i.e. `convert=FALSE`. In this mode, function results will not be converted back to R (you need to manually make conversion by yourself via `py_to_r`). Now the following example works.
```r
> np <- import("numpy", convert = TRUE)
> ants <- load_ants()
>
> image <- ants$image_read(ants$get_ants_data('mni'))
> image_array <- np$asarray(list(image, image))
>
> ants$plot_grid(image_array, slices = 100L)
```
> Object `ants` in `rpyANTs` is a non-conversion Python module. Object `py` is a auto-conversion Python module
### Operators
In Python, operators on `ANTsImage`, such as `img > 5` are defined. Such operators is being supported in R as `S3` generic functions. Don't worry if you don't know what is `S3` generic, see the following examples:
```r
library(rpyANTs)
image <- ants$image_read(ants$get_ants_data('mni'))
print(image)
dim(image)
range(image)
y1 <- (image > 10) * 8000
y2 <- image
y2[y2 < 10] <- 4000
y3 <- log(image + 1000)
y3 <- (y3 - min(y3)) / (max(y3) - min(y3)) * 8000
ants_plot_grid(
list(image, y1, y2, y3),
slices = 100, shape = c(1, 4),
vmin = 0, vmax = 8000
)
```
<img src="man/figures/README-s3-generic-showcase-1.png" width="100%" />
Although the operator generics have been implemented for common classes such as `ANTsImage` and `ANTsTransform`. Many are still under development and not supported. In this case, you might want to use the following workaround methods. You are more than welcome to post a wish-list or issue ticket to the [`Github` repository](https://github.com/dipterix/rpyANTs/issues)
Alternative version 1: call operators directly
```r
library(rpyANTs)
image <- ants$image_read(ants$get_ants_data('r16'))
# The followings are the same
# threshold <- image > 10
threshold <- image$`__gt__`(10)
ants$plot(threshold)
```
Work-around version 2: If you don't know how Python operators work, use Python directly
```r
library(rpyANTs)
image <- ants$image_read(ants$get_ants_data('r16'))
# Create an R variable from Python!
py_run_string("r.threshold = r.image > 10", local = TRUE, convert = FALSE)
ants$plot(threshold)
```
## Citation
This is a general citation for `ANTs`:
> Avants, B.B., Tustison, N. and Song, G., 2009. Advanced normalization tools (ANTS). The Insight Journal, 2(365), pp.1-35.
If you are using `rpyANTs` through `RAVE` or `YAEL`, please also cite:
> Magnotti, J.F., Wang, Z. and Beauchamp, M.S., 2020. RAVE: Comprehensive open-source software for reproducible analysis and visualization of intracranial EEG data. NeuroImage, 223, p.117341.
## License
This package `rpyANTs` is released under Apache-2.0 license (Copyright: Zhengjia Wang).
The underlying `ANTsPy` is released under Apache-2.0 license (Copyright: ANTs contributors).