-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_tacotron.py
230 lines (191 loc) · 9.63 KB
/
train_tacotron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import itertools
from pathlib import Path
import torch
from torch import optim
from torch.utils.data.dataloader import DataLoader
from typing import Tuple
from models.tacotron import Tacotron
from trainer.taco_trainer import TacoTrainer
from utils import hparams as hp
from utils.checkpoints import restore_checkpoint
from utils.dataset import get_tts_datasets, filter_max_len
from utils.display import *
from utils.dsp import np_now
from utils.duration_extraction import extract_durations_per_count, extract_durations_with_dijkstra
from utils.files import pickle_binary, unpickle_binary
from utils.metrics import attention_score
from utils.paths import Paths
from utils.text import phonemes
def normalize_pitch(phoneme_pitches):
nonzeros = np.concatenate([v[np.where(v != 0.0)[0]]
for item_id, v in phoneme_pitches])
mean, std = np.mean(nonzeros), np.std(nonzeros)
for item_id, v in phoneme_pitches:
zero_idxs = np.where(v == 0.0)[0]
v -= mean
v /= std
v[zero_idxs] = 0.0
return mean, std
# adapted from https://github.com/NVIDIA/DeepLearningExamples/blob/
# 0b27e359a5869cd23294c1707c92f989c0bf201e/PyTorch/SpeechSynthesis/FastPitch/extract_mels.py
def extract_pitch(save_path: Path) -> Tuple[float, float]:
train_data = unpickle_binary('data/train_dataset.pkl')
val_data = unpickle_binary('data/val_dataset.pkl')
all_data = filter_max_len(train_data + val_data)
phoneme_pitches = []
for prog_idx, (item_id, mel_len) in enumerate(all_data, 1):
dur = np.load(paths.alg / f'{item_id}.npy')
assert np.sum(dur) == mel_len
pitch = np.load(paths.raw_pitch / f'{item_id}.npy')
durs_cum = np.cumsum(np.pad(dur, (1, 0)))
pitch_char = np.zeros((dur.shape[0],), dtype=np.float)
for idx, a, b in zip(range(mel_len), durs_cum[:-1], durs_cum[1:]):
values = pitch[a:b][np.where(pitch[a:b] != 0.0)[0]]
values = values[np.where(values < hp.pitch_max_freq)[0]]
pitch_char[idx] = np.mean(values) if len(values) > 0 else 0.0
phoneme_pitches.append((item_id, pitch_char))
bar = progbar(prog_idx, len(all_data))
msg = f'{bar} {prog_idx}/{len(all_data)} Files '
stream(msg)
mean, var = normalize_pitch(phoneme_pitches)
for item_id, phoneme_pitch in phoneme_pitches:
np.save(str(save_path / f'{item_id}.npy'), phoneme_pitch, allow_pickle=False)
print(f'\nPitch mean: {mean} var: {var}')
return mean, var
def create_gta_features(model: Tacotron,
train_set: DataLoader,
val_set: DataLoader,
save_path: Path):
model.eval()
device = next(model.parameters()).device # use same device as model parameters
iters = len(train_set) + len(val_set)
dataset = itertools.chain(train_set, val_set)
for i, (x, mels, ids, x_lens, mel_lens) in enumerate(dataset, 1):
x, mels = x.to(device), mels.to(device)
with torch.no_grad():
_, gta, _ = model(x, mels)
gta = gta.cpu().numpy()
for j, item_id in enumerate(ids):
mel = gta[j][:, :mel_lens[j]]
np.save(str(save_path/f'{item_id}.npy'), mel, allow_pickle=False)
bar = progbar(i, iters)
msg = f'{bar} {i}/{iters} Batches '
stream(msg)
def create_align_features(model: Tacotron,
train_set: DataLoader,
val_set: DataLoader,
save_path_alg: Path,
# save_path_pitch: Path
):
assert model.r == 1, f'Reduction factor of tacotron must be 1 for creating alignment features! ' \
f'Reduction factor was: {model.r}'
model.eval()
device = next(model.parameters()).device # use same device as model parameters
if val_set is not None:
iters = len(val_set) + len(train_set)
dataset = itertools.chain(train_set, val_set)
else:
# print('here')
iters = len(train_set)
# print(iters)
dataset = itertools.chain(train_set)
att_score_dict = {}
if hp.extract_durations_with_dijkstra:
print('Extracting durations using dijkstra...')
dur_extraction_func = extract_durations_with_dijkstra
else:
print('Extracting durations using attention peak counts...')
dur_extraction_func = extract_durations_per_count
# for i in dataset:
# print(i)
for i, (x, mels, ids, x_lens, mel_lens) in enumerate(dataset, 1):
x, mels = x.to(device), mels.to(device)
# print(x)
# print(mels)
with torch.no_grad():
_, _, att_batch = model(x, mels)
align_score, sharp_score = attention_score(att_batch, mel_lens, r=1)
att_batch = np_now(att_batch)
seq, att, mel_len, item_id = x[0], att_batch[0], mel_lens[0], ids[0]
align_score, sharp_score = float(align_score[0]), float(sharp_score[0])
att_score_dict[item_id] = (align_score, sharp_score)
durs = dur_extraction_func(seq, att, mel_len)
if np.sum(durs) != mel_len:
print(f'WARNINNG: Sum of durations did not match mel length for item {item_id}!')
np.save(str(save_path_alg / f'{item_id}.npy'), durs, allow_pickle=False)
bar = progbar(i, iters)
msg = f'{bar} {i}/{iters} Batches '
stream(msg)
pickle_binary(att_score_dict, paths.data / 'att_score_dict.pkl')
# print('Extracting Pitch Values...')
# extract_pitch(save_path_pitch)
if __name__ == '__main__':
# Parse Arguments
parser = argparse.ArgumentParser(description='Train Tacotron TTS')
parser.add_argument('--force_train', '-f', action='store_true', help='Forces the model to train past total steps')
parser.add_argument('--force_gta', '-g', action='store_true', help='Force the model to create GTA features')
parser.add_argument('--force_align', '-a', action='store_true', help='Force the model to create attention alignment features')
parser.add_argument('--force_cpu', '-c', action='store_true', help='Forces CPU-only training, even when in CUDA capable environment')
parser.add_argument('--extract_pitch', '-p', action='store_true', help='Extracts phoneme-pitch values only')
parser.add_argument('--hp_file', metavar='FILE', default='hparams.py', help='The file to use for the hyperparameters')
parser.add_argument('--fa_dt', action='store_true', help='if for DT')
args = parser.parse_args()
hp.configure(args.hp_file) # Load hparams from file
paths = Paths(hp.data_path, hp.voc_model_id, hp.tts_model_id)
if args.extract_pitch:
print('Extracting Pitch Values...')
mean, var = extract_pitch(paths.phon_pitch)
print('\n\nYou can now train ForwardTacotron - use python train_forward.py\n')
exit()
if not args.force_cpu and torch.cuda.is_available():
device = torch.device('cuda')
for session in hp.tts_schedule:
_, _, _, batch_size = session
if batch_size % torch.cuda.device_count() != 0:
raise ValueError('`batch_size` must be evenly divisible by n_gpus!')
else:
device = torch.device('cpu')
print('Using device:', device)
# Instantiate Tacotron Model
print('\nInitialising Tacotron Model...\n')
model = Tacotron(embed_dims=hp.tts_embed_dims,
num_chars=len(phonemes),
encoder_dims=hp.tts_encoder_dims,
decoder_dims=hp.tts_decoder_dims,
n_mels=hp.num_mels,
fft_bins=hp.num_mels,
postnet_dims=hp.tts_postnet_dims,
encoder_K=hp.tts_encoder_K,
lstm_dims=hp.tts_lstm_dims,
postnet_K=hp.tts_postnet_K,
num_highways=hp.tts_num_highways,
dropout=hp.tts_dropout,
stop_threshold=hp.tts_stop_threshold).to(device)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print(f'Num Params: {params}')
optimizer = optim.Adam(model.parameters())
restore_checkpoint('tts', paths, model, optimizer, create_if_missing=True, device=device)
if args.force_gta:
print('Creating Ground Truth Aligned Dataset...\n')
train_set, val_set = get_tts_datasets(paths.data, 8, model.r)
create_gta_features(model, train_set, val_set, paths.gta)
print('\n\nYou can now train WaveRNN on GTA features - use python train_wavernn.py --gta\n')
elif args.force_align:
print('Creating Attention Alignments and Pitch Values...')
train_set, val_set = get_tts_datasets(paths.data, 1, model.r)
create_align_features(model, train_set, val_set, paths.alg) # paths.phon_pitch)
print('\n\nYou can now train ForwardTacotron - use python train_forward.py\n')
elif args.fa_dt:
print('Creating Attention Alignments for DT...')
train_set_dt = get_tts_datasets(paths.data, 1, model.r, model_type='forward_pre_dt')
create_align_features(model, train_set_dt, None, paths.alg_dt) # paths.phon_pitch)
print('\n\nYou can now train ForwardTacotron - use python train_forward.py\n')
else:
trainer = TacoTrainer(paths)
trainer.train(model, optimizer)
print('Creating Attention Alignments and Pitch Values...')
train_set, val_set = get_tts_datasets(paths.data, 8, model.r)
create_align_features(model, train_set, val_set, paths.alg) # paths.phon_pitch)
print('\n\nYou can now train ForwardTacotron - use python train_forward.py\n')