-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer_asr.py
184 lines (158 loc) · 7.1 KB
/
trainer_asr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
from datasets import load_metric
# from load_dataset import prepare
# from extract_features import processor, Wav2Vec2Processor
from transformers import TrainingArguments
from transformers import Trainer
import numpy as np
import pickle
# class CustomWav2Vec2Dataset(torch.utils.data.Dataset):
# def __init__(self, split='train'):
# super().__init__()
# assert split in {'train', 'eval'}
# self.split = split
# self.path = Path(f'./{split}.parquet')
# df = pd.read_parquet(self.path)
# self.labels = [x.tolist() for x in df['labels'].tolist()]
# self.paths = df['path'].tolist()
# self.max_input_length_quantile = .98
# self.max_input_length = None
# if split == 'train':
# with Pool(training_args.dataloader_num_workers) as p:
# self.input_seq_lengths = list(tqdm(p.imap(get_input_len, self.paths), total=len(self.paths), miniters=100, desc='getting train input lengths'))
# self.max_input_length = torch.tensor(self.input_seq_lengths).float().quantile(self.max_input_length_quantile).int().item()
# def __len__(self):
# return len(self.paths)
# def __getitem__(self, idx):
# inputs = load_speech(self.paths[idx])
# if self.split == 'train':
# inputs = inputs[:self.max_input_length]
# label = self.labels[idx]
# return {'input_values': inputs, 'labels': label}
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.Wav2Vec2Processor`)
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_length_labels (:obj:`int`, `optional`):
Maximum length of the ``labels`` returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
processor: Wav2Vec2Processor
padding: Union[bool, str] = True
max_length: Optional[int] = None
max_length_labels: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
batch = self.processor.pad(
input_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
with self.processor.as_target_processor():
labels_batch = self.processor.pad(
label_features,
padding=self.padding,
max_length=self.max_length_labels,
pad_to_multiple_of=self.pad_to_multiple_of_labels,
return_tensors="pt",
)
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
def train():
processor = Wav2Vec2Processor.from_pretrained('./asr_output/pretrained_processor')
# torch.cuda.empty_cache()
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
wer_metric = load_metric("wer")
# print(processor.tokenizer)
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
model = Wav2Vec2ForCTC.from_pretrained(
"asr_output/checkpoint-906",
attention_dropout=0.1,
hidden_dropout=0.1,
feat_proj_dropout=0.0,
mask_time_prob=0.05,
layerdrop=0.1,
gradient_checkpointing=True,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer)
)
# print(model)
# exit()
model.freeze_feature_extractor()
training_args = TrainingArguments(
output_dir="./asr_output/",
# output_dir="./wav2vec2-large-xlsr-turkish-demo",
overwrite_output_dir = True,
group_by_length=True,
per_device_train_batch_size=16,
gradient_accumulation_steps=2,
evaluation_strategy="steps",
num_train_epochs=250,
fp16=True,
save_steps=1,
eval_steps=100,
logging_steps=500,
learning_rate=1e-4,
weight_decay=0.005,
# learning_rate=3e-4,
warmup_steps=500,
save_total_limit=2,
)
print("loading data...")
with open('./data/speech-sme-asr/train_asr.pkl', 'rb') as f:
train = pickle.load(f)
with open('./data/speech-sme-asr/test_asr.pkl', 'rb') as f:
test = pickle.load(f)
print('loaded...')
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train,
eval_dataset=test,
tokenizer=processor.feature_extractor,
)
print('Starting the trainer...')
trainer.train()
# return trainer
if __name__ == "__main__":
train()