-
Notifications
You must be signed in to change notification settings - Fork 0
/
4_irrationality.tex
510 lines (454 loc) · 24.8 KB
/
4_irrationality.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
% !TEX root = Daniel-Miller-thesis.tex
\chapter{Irrationality exponents and CM abelian varieties}\label{chapter:irrationality-exponent}
\section{Definitions and first results}
We follow the notation of \cite{laurent-2009}. Fix a dimension
$d\geqslant 1$, and let $\vx=(x_1,\dots,x_d)\in \bR^d$ be such that the $x_i$
are irrational and linearly independent over $\bQ$. If $d = 1$, the
\emph{irrationality
exponent} of $x\in \bR$ is the supremum of the set of $w\in \bR^+$ such that
there infinitely many rational numbers $\frac p q$ with
$\left| x - \frac p q\right| \leqslant q^{-w}$. If $x$ is rational, then it has
irrationality exponent $1$. If $x$ is an algebraic irrational, then Roth's
theorem says its irrationality exponent is $2$. Liouiville constructed
transcendental numbers with arbitrarily large irrationality exponent. By
\cite[Th.~E.3]{bugeaud--2012}, only a measure-zero set of reals, for example
the Louiville number $\sum_{r\geqslant 1} 10^{-r!}$, have infinite
irrationality exponent. In fact, by the same result, only a measure-zero set of
reals have irrationality exponent $\ne 2$. In the results below, we will only
consider reals with finite irrationality exponent. When $d\geqslant 1$, there
are a $d$ natural measures of irrationality, but we will use only two of them.
For the remainder of this thesis, let $\langle \cdot,\cdot\rangle$ be the
standard inner product on $\bR^d$.
\begin{definition}\label{def:approx-exp}
Let $\omega_0(\vx)$ (resp.~$\omega_{d-1}(\vx)$) be the supremum of the set of
real numbers $w$ for which there exist infinitely many
$(n,\vm)\in \bZ\times\bZ^d$ such that
\begin{align*}
|n \vx - \vm|_\infty
&\leqslant |(n,\vm)|_\infty^{-w} \\
\text{(resp.~}
|n +\langle \vm,\vx\rangle|
&\leqslant |(n,\vm)|_\infty^{-w} \text{).}
\end{align*}
\end{definition}
It is easy to see that both $\omega_0(\vx)$ and $\omega_{d-1}(\vx)$ are
nonnegative. Even better, by \cite[Th.~2 Cor]{laurent-2009},
$\omega_0(\vx) \geqslant \frac 1 d$ and $\omega_{d-1}(\vx) \geqslant d$.
These two quantities are related by Khintchine's transference
principle \cite[Th.~2]{laurent-2009}, namely
\[
\frac{\omega_{d-1}(\vx)}{(d-1) \omega_{d-1}(\vx)+d} \leqslant \omega_0(\vx) \leqslant \frac{\omega_{d-1}(\vx)-d+1}{d} .
\]
Moreover, the second of these inequalities is sharp in a very strong sense.
% For Jarnik's paper online
% http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-aav2i1p1bwm
\begin{theorem}[\cite{jarnik-1936}]\label{thm:jarnik}
Let $w\geqslant 1/d$. Then there exists $\vx\in \bR^d$ such that
$\omega_0(\vx)=w$ and $\omega_{d-1}(\vx) = d w+d-1$.
\end{theorem}
We can relate the traditional irrationality exponent and the invariant
$\omega_0$ in the special case $d = 1$.
\begin{theorem}\label{thm:omega-irrationality}
If $d=1$, then $\omega_0(x) = \mu-1$, where $\mu$ is the
traditional irrationality exponent of $x$.
\end{theorem}
\begin{proof}
Both $\mu$ and $\omega_0$ are invariant under translation by $\bZ$, so without
loss of generality we may assume $x\in [0,1)$.
First we show that $\omega_0(x)\geqslant \mu-1$. Suppose there exist infinitely
many $p/q$ with $\left| x - \frac p q\right| \leqslant q^{-w}$. Since $x<1$ we
may assume that for infinitely many of the $p/q$, $p<q$. Then
$| q x - p| \leqslant q^{-(w - 1)} = \max(p,q)^{-(w-1)}$, which tells us that
$\omega_0(x) \geqslant \mu - 1$.
Now, we show that $\mu \geqslant \omega_0(x) + 1$. Suppose there exist
infinitely many $(n,m)$ with $|n x - m| \leqslant \max(|n|,|m|)^{-w}$. By the
reverse triangle inequality,
$\left| |n x| - |m|\right| \leqslant \max(|n|,|m|)^{-w}$, and since
$x<1$, for $n$ sufficiently large this implies $|n| \geqslant |m|$. It follows
that for infinitely many $\frac m n$, we have
$\left| x - \frac m n\right| \leqslant n^{-(w + 1)}$, which implies
$\mu \geqslant \omega_0(x) + 1$.
\end{proof}
Here is a statement of Roth's theorem in the current context.
\begin{theorem}[Roth]
Let $x\in (\overline\bQ\cap \bR)\smallsetminus \bQ$. Then
$\omega_0(x) = 1$.
\end{theorem}
\begin{proof}
This follows directly from \cite{roth-1955} and Theorem
\ref{thm:omega-irrationality}.
\end{proof}
Given $\vx\in \bR^d$, write
$\dd(\vx,\bZ^d)=\min_{\vm\in \bZ^d} |\vx-\vm|_\infty$. Note that
$\dd(\vx,\bZ^d)=0$ if and only if $\vx\in \bZ^d$. Moreover, $\dd(-,\bZ^d)$
is well-defined for elements of $\bT^d = (\bR/\bZ)^d$.
\begin{lemma}\label{lem:bound-distance}
Let $\vx\in \bR^d$ with $|\vx|_\infty< 1$ and $\omega_0(\vx)$
(resp.~$\omega_{d-1}(\vx)$) finite. Then
\begin{align*}
\frac{1}{\dd(n \vx,\bZ^d)}
&\ll |n|^{\omega_0(\vx)+\epsilon}
&&\text{ for $n\in \bZ\smallsetminus 0$} \\
\text{(resp.~}
\frac{1}{\dd\left(\langle \vm,\vx\rangle, \bZ\right)}
&\ll |\vm|_\infty^{\omega_{d-1}(\vx)+\epsilon}
&&\text{ for $\vm\in \bZ^d\smallsetminus \vzero$).}
\end{align*}
\end{lemma}
\begin{proof}
Let $\epsilon>0$. Then there are only finitely many $n\in \bZ$
(resp.~$\vm\in \bZ^d$) such that the inequalities in Definition
\ref{def:approx-exp} hold with $w = \omega_0(x)+\epsilon$
(resp.~$w = \omega_{d-1}(\vx)+\epsilon$). In other words, there exist constants
$C_0, C_{d-1}>0$, depending on $\vx$ and $\epsilon$, such that
\begin{align*}
|n \vx - \vm|_\infty
&\geqslant C_0 |(n,\vm)|_\infty^{-\omega_0(\vx)-\epsilon} ,\\
|n + \langle \vm,\vx\rangle|
&\geqslant C_{d-1} |(n,\vm)|_\infty^{-\omega_{d-1}(\vx)-\epsilon}
\end{align*}
for all $(n,\vm)\ne (0,\vzero)$ in $\bZ\times\bZ^d$.
Start with the first inequality. Fix $n$, and let $\vm$ be a lattice point
achieving the minimum $|n \vx - \vm|_\infty$; then
$\dd(n \vx,\bZ^d) \geqslant C_0 |(n,\vm)|_\infty^{-\omega_0(\vx)-\epsilon}$.
Since $|n\vx - \vm|_\infty < 1$, the reverse triangle inequality gives
$\left| |n| - \frac{|\vm|_\infty}{|\vx|_\infty}\right| \leqslant \frac{1}{|\vx|_\infty}$. So $|n|$ and $|\vm|$ are bounded above and below by scalar multiples
of each other, which tells us that
$\dd(n \vx,\bZ^d) \geqslant C_0' |n|^{-\omega_0(\vx)-\epsilon}$ for $C_0'$
depending on $\vx$. Thus
$\frac{1}{\dd(n \vx,\bZ^d)} \ll |n|^{\omega_0(\vx)+\epsilon}$, the
implied constant depending on both $\vx$ and $\epsilon$.
Now we consider the second inequality. Note that when $\vm\ne 0$,
$\dd(\langle \vm,\vx\rangle,\bZ) = |n + \langle \vm,\vx\rangle|$ for
some $n$ with $|n| \leqslant |\vm|_2\cdot |\vx|_2 + 1$. Thus
$|(n,\vm)|_\infty \ll |\vm|_2 \ll |\vm|_\infty$ with the implied constants
depending on $d$ and $\vx$, because any two norms on a
finite-dimensional Banach space are equivalent. This gives us
$\dd(\langle\vm,\vx\rangle,\bZ) \geqslant C_{d-1}' |\vm|_\infty^{-\omega_{d-1}(\vx)-\epsilon}$,
for some constant $C_{d-1}'$, which implies
\[
\frac{1}{d(\langle \vm,\vx\rangle,\bZ)} \ll |\vm|_\infty^{\omega_{d-1}(\vx)+\epsilon} ,
\]
the implied constant depending on $\vx$ and $\epsilon$.
\end{proof}
\section{Irrationality exponents and discrepancy}
Let $\vx=(x_1,\dots,x_d)\in \bR^d$. The sequence
$(\vx\mod \bZ^d,2\vx\mod\bZ^d,\dots)$ will be equidistributed in a subgroup of
$\bT^d$. We are interested in the case where this sequence is equidistributed
in the whole torus $\bT^d$, so assume $x_1,\dots,x_d$ are irrational and
linearly independent over $\bQ$ (this condition also makes sense for elements
of $\bT^d$). For $\vx\in \bT^d$, we wish to control the discrepancy of the
sequence $(\vx,2\vx,3\vx,\dots)$ with respect to the Haar measure of $\bT^d$.
\begin{theorem}[Erd\"os--Tur\'an--Koksma. {\cite[Th.~1.21]{drmota-tichy-1997}}]\label{thm:ETK}
Let $\bvx$ be a sequence in $\bT^d$ and $h$ an arbitrary integer. Then
\[
\D_N(\bvx) \ll \frac 1 h + \sum_{0\leqslant |\vm|_\infty \leqslant h} \frac{1}{r(\vm)} \left| \frac 1 N \sum_{n\leqslant N} e^{2\pi i \langle \vm,\vx_n\rangle}\right| ,
\]
where the first sum ranges over $\vm\in \bZ^d$,
$r(\vm) = \prod \max\{1,|m_i|\}$, and the implied constant depends only on $d$.
\end{theorem}
\begin{lemma}\label{lem:bound-exp-sum}
Let $x\in \bR\smallsetminus \bZ$. Then
$\left| \sum_{n\leqslant N} e^{2\pi i n x}\right| \leqslant \frac{2}{\dd(x, \bZ)}$.
\end{lemma}
\begin{proof}
We begin with an easy bound:
\[
\left| \sum_{n\leqslant N} e^{2\pi i n x}\right| = \frac{|e^{2\pi i (N+1) x} - e^{2\pi i x}|}{|e^{2\pi i x} - 1|} \leqslant \frac{2}{|e^{2\pi i x} - 1|} .
\]
Since $|e^{2\pi i x} - 1| = \sqrt{2-2\cos(2\pi x)}$ and
$\cos(2\theta) = 1-2\sin^2\theta$, we obtain
\[
\left|\sum_{n\leqslant N} e^{2\pi i n x}\right| \leqslant \frac{1}{|\sin(\pi x)|} .
\]
It is easy to check that $|\sin(\pi x)| \geqslant \dd(x,\bZ)$, whence the result.
\end{proof}
\begin{corollary}\label{cor:bound-disc-distance}
Let $\vx$ generate a dense subgroup of $\bT^d$.
For $\bvx=(\vx,2\vx,3\vx,\dots)$ in $\bT^d$, we have
\[
\D_N(\bvx) \ll \frac 1 h + \frac 1 N \sum_{0<|\vm|_\infty \leqslant h} \frac{2}{r(\vm) \dd(\langle \vm,\vx\rangle,\bZ)}
\]
for any integer $h$, with the implied constant depending only on $d$.
\end{corollary}
\begin{proof}
Apply the Erd\"os--Tur\'an--Koksma inequality (Theorem \ref{thm:ETK}), and
bound the exponential sums using Lemma \ref{lem:bound-exp-sum}.
\end{proof}
We combine the above results to estimate an upper bound on the discrepancy of
the sequence $\bvx$.
\begin{theorem}\label{thm:disc-upper-bound}
Let $\vx$ generate a dense subgroup of $\bT^d$, and let
$\bvx=(\vx,2\vx,3\vx,\dots)$ in $\bT^d$. Then
$\D_N(\bvx) \ll N^{-\frac{1}{\omega_{d-1}(\vx)+1}+\epsilon}$.
\end{theorem}
\begin{proof}
Fix $\epsilon>0$ smaller than $\frac{1}{\omega_{d-1}(\vx) - 1}$, and choose
$\delta>0$ such that
$\frac{1}{\omega_{d-1}(\vx)+1+\delta} = \frac{1}{\omega_{d-1}(\vx)+1} - \epsilon$.
By Corollary \ref{cor:bound-disc-distance}, we know that
\[
\D_N(\bvx) \ll \frac 1 h + \frac 1 N \sum_{0<|\vm|_\infty \leqslant h} \frac{1}{r(\vm) \dd(\langle \vm,\vx\rangle,\bZ)} ,
\]
and by Lemma \ref{lem:bound-distance}, we know that
$\dd(\langle \vm,\vx\rangle,\bZ)^{-1} \ll |\vm|_\infty^{\omega_{d-1}(\vx)+\delta}$.
It follows that
\[
\D_N(\bvx) \ll \frac 1 h + \frac 1 N \sum_{0 < |\vm|_\infty \leqslant h} \frac{|\vm|_\infty^{\omega_{d-1}(\vx)+\delta}}{r(\vm)} .
\]
All that remains is to bound the sum. Clearly
\[
\sum_{0 < |\vm|_\infty \leqslant h} \frac{|\vm|_\infty^{\omega_{d-1}(\vx) + \delta}}{r(\vm)} \ll \int_1^h \int_1^h \dots \int_1^h \frac{\max(|t_1|,\dots,|t_d|)^{\omega_{d-1}(\vx)+\delta}}{t_1 \dots t_d}\, \dd t_1 \dots \dd t_d .
\]
For each permutation $\sigma$ of $\{1,\dots,d\}$, call $I_\sigma$ the set of
all $(t_1,\dots,t_d)$ in $[1,h]^d$ with
$t_{\sigma(1)} \leqslant \dots \leqslant t_{\sigma(d)}$. Then
$[1,h]^d = \bigcup_{\sigma\in S_d} I_\sigma$, and each integral over
$I_\sigma$ is easy to bound. For example, the integral over $I_1$ is
\begin{align*}
\int_1^h \int_1^{t_d} \dots \int_1^{t_2} \frac{t_d^{\omega_{d-1}(\vx)+\delta}}{t_1 \dots t_d}\, \dd t_1 \dots \dd t_d
&\ll \int_1^h t^{\omega_{d-1}(\vx)+\delta-1}\, \dd t \prod_{j=1}^{d-1} \int_1^h \frac{\dd t}{t} \\
&\ll (\log h)^{d-1} h^{\omega_{d-1}(\vx)+\delta} .
\end{align*}
It follows that
$\D_N(\bvx) \ll \frac 1 h + \frac 1 N (\log h)^{d-1} h^{\omega_{d-1}(\vx)+\delta}$.
Setting $h\approx N^{\frac{1}{1+\omega_{d-1}(\vx)+\delta}}$, we see that
$D_N(\bvx) \ll N^{-\frac{1}{\omega_{d-1}(\vx)+1+\delta}} = N^{-\frac{1}{\omega_{d-1}(\vx)+1} + \epsilon}$.
For a slightly different proof of a similar result, given as a sequence of
exercises, see \cite[Ch.~2, Ex.~3.15, 16, 17]{kuipers-niederreiter-1974}.
Also, this estimate is quite coarse, but a better one would only have a smaller
leading coefficient, which no doubt would be useful for computational
purposes, but does not strengthen any of the results in this thesis.
\end{proof}
\begin{theorem}\label{thm:disc-lower-bound}
Let $\vx\in \bT^d$ generate a dense subgroup, with $\omega_0(\vx)$,
$\omega_{d-1}(\vx)$ finite. Let $\bvx=(\vx,2\vx,3\vx,\dots)$. Then
$\D_N(\bvx) = \Omega\left(N^{-\frac{d}{\omega_0(\vx)}-\epsilon} \right)$.
\end{theorem}
\begin{proof}
We follow the proof of \cite[Ch.~2, Th.~3.3]{kuipers-niederreiter-1974},
modifying it as needed for our context. Given $\epsilon>0$, there exists
$\delta>0$ such that
$\frac{d}{\omega_0(\vx)-\delta} = \frac{d}{\omega_0(\vx)} + \epsilon$.
By the definition of $\omega_0(\vx)$, there exist infinitely many
$(n,\vm)$ with $n>0$ such that
$|n \vx - \vm|_\infty \leqslant |(n,\vm)|_\infty^{-\omega_0(\vx)+\delta/2}$.
For any fixed $n$, where are only finitely many $\vm$ with
$|n \vx - \vm|_\infty \leqslant 1$. Since $|(n,\vm)|_\infty \geqslant n$, for
any fixed $n$ there are at most finitely many $\vm$ with
$|n \vx - \vm|_\infty \leqslant |(n,\vm)|_\infty^{-\omega_0(\vx)+\delta/2}$.
Thus we derive the seemingly stronger statement that for infinitely many $n$,
there exists $\vm\in \bZ^d$ such that
$|n \vx-\vm|_\infty \leqslant n^{-\omega_0(\vx)+\delta/2}$ or, equivalently,
$|\vx-n^{-1}\vm| \leqslant n^{-1-\omega_0(\vx)+\delta/2}$. Fix one such $n$,
and let $N=\lfloor n^{\omega_0(\vx)-\delta}\rfloor$. For each $r\leqslant N$,
we have
\[
\left|r \vx - r n^{-1} \vm\right|_\infty
= r \left|\vx - n^{-1} \vm\right|_\infty
\leqslant r n^{-1-\omega_0(\vx)+\delta/2}
\leqslant n^{-1-\delta/2}.
\]
Thus, for each $r\leqslant N$, $r \vx$ is within $n^{-1-\delta/2}$ of the
grid $\frac 1 n \bZ^d\subset \bT^d$. So no element of
$\{\vx,\dots,N \vx\}$ lies in the half-open box
$I_n = \left[ n^{-1 - \delta / 3}, n^{-1} - n^{-1 - \delta / 3}\right)^d$.
Moreover, $I_n$ has volume $\left(n^{-1} - 2n^{-1 - \delta / 3}\right)^d$.
For $n$ sufficiently large, the volume of $I_n$ is bounded below by
$2^{-d} n^{-d}$, so the discrepancy $\D_N(\bvx)$ is
bounded below by $2^{-d} n^{-d}$. Since $n^{\omega_0(\vx)-\delta} \leqslant 2 N$,
the discrepancy $\D_N(\bvx)$ is bounded below by
\[
2^{-d} \left( (2 N)^{\frac{1}{\omega_0(\vx)-\delta}}\right)^{-d}
= 2^{-d-\frac{d}{\omega_0(\vx)-\delta}} N^{-\frac{d}{\omega_0(\vx)-\delta}}
= 2^{-d\left(1+\frac{1}{\omega_0(\vx)}\right)-\epsilon} N^{-\frac{d}{\omega_0(\vx)}-\epsilon} .
\]
Since $\D_N(\bvx)$ can, as $N\to \infty$, be bounded below by a constant
multiple of $N^{-\frac{d}{\omega_0(\vx)}-\epsilon}$, the proof is complete.
\end{proof}
\section{Pathological Satake parameters for CM abelian varieties}
\label{sec:Satake-CM}
We apply the results of the previous sections to $L$-functions associated to
CM abelian varieties. For background on the motivic Galois group and Sato--Tate
group of an abelian variety, see \cite{serre-tate-1968,serre-1994,yu-2015}.
Recall that for $E$ a non-CM elliptic curve, the
Akiyama--Tanigawa conjecture implies the Riemann hypothesis for all
$L(\sym^k E,s)$, $k\geqslant 1$. The appearance of $\sym^k$ is dictated by the
classification of irreducible representations of $\SU(2)$, the Sato--Tate group
of $E$. If $A$ is a CM abelian variety, there should be an $L$-function (and
Galois representation) for each irreducible representation of the Sato--Tate
group of $A$, which we denote by $\ST(A)$. In the
CM case, $\ST(A)$ is a real torus, so things can be described relatively
explicitly.
Let $K/\bQ$ be a finite Galois extension, $A_{/K}$ a $g$-dimensional abelian
variety with complex multiplication by $F$, defined over $K$, that is,
$F = \End_K(A)_\bQ$. Since the action of $F$ commutes with
$\rho_l\colon G_\bQ \to \GL_{2g}(\bQ_l)$, the Galois representation coming
from the $l$-adic Tate module of $A$ takes values in $\R_{F/\bQ}\Gm(\bQ_l)$,
where $R_{F/\bQ} \Gm$ is the Weil restriction of scalars of the multiplicative
group from $F$ to $\bQ$. The functor of points of $\R_{F/\bQ}\Gm$ is
$R\mapsto (R\otimes F)^\times$. It follows that the Sato--Tate group of $A$ is
a subgroup of the maximal compact torus inside $\R_{F/\bQ}\Gm(\bC)$.
Recall, following \cite{serre-1994}, that the motivic Galois group of $A$
should be a subgroup $G_A\subset \R_{F/\bQ}\Gm$ such that for all primes $l$,
the image $\rho_l(G_\bQ)$ lies inside $G_A(\bQ_l)$, and is open in
$G_A(\bQ_l)$. For general abelian varieties, the existence of the motivic
Galois group is a matter of conjecture, but for CM abelian varieties, it can be
described directly. Let $\fa=\Lie(A)$ and
$\det_\fa\colon \R_{K/\bQ}\Gm \to \R_{F/\bQ}\Gm$ be the map induced by the
determinant of the action of $K$ on $\fa$ (viewed as an $F$-vector space). Then
$G_A = \im(\det_\fa)$ \cite{yu-2015}, and $\ST(A)$ is a maximal compact
subgroup of $G_A^1(\bC) = G_A^{\N_{F/\bQ} = 1}(\bC)$. So
$\ST(A) \simeq \bT^d$ for some $1\leqslant d \leqslant g$ (we will use the
same $d$ when applying Theorem \ref{thm:disc-lower-bound}), and every
unitary character of $\ST(A)$ is induced by an algebraic character of
$G_A^1$. Any character of a subtorus extends to the whole torus, so any
character of $G_A^1$ is the restriction of a character of $\R_{F/\bQ}\Gm$.
Let $\fp$ be a prime of $K$ at which $A$ has good reduction. Then
$F = \End(A)_\bQ\hookrightarrow \End(A_{/\bF_\fp})_\bQ$, and the Frobenius
element $\frob_\fp\in \End(A_{/\bF_\fp})_\bQ$ comes from an element
$\pi_\fp\in F$. In other words, $\rho_l(\frob_\fp) = \pi_\fp$. The element
$\pi_\fp\in F$ is $\fp$-Weil of weight $1$,
i.e.~$|\sigma(\pi_\fp)| = \N(\fp)^{1/2}$ for all embeddings
$\sigma\colon F\hookrightarrow \bC$. The normalized element
$\theta_\fp = \frac{\pi_\fp}{\N(\fp)^{1/2}}$ lies in $\ST(A)$, and we call this
the Satake parameter for $A$ at $\fp$. For the Satake parameters to be
equidistributed in $\ST(A)$, it is necessary and sufficient for the
$L$-function $L(r\circ \rho_l,s)$ to have non-vanishing analytic continuation
to $\Re =1$ for each $r\in \X^\ast(\R_{F/\bQ}\Gm)$ which has nontrivial
restriction to $\ST(A)$. By the Wiener--Ikehara Tauberian theorem, this is
equivalent to an estimate
$\left| \sum_{\N(\fp)\leqslant x} r(\theta_\fp)\right| = o(\pi_K(x))$, where
$\pi_K(x)$ is the number of primes $\fp$ of $K$ with $\N(\fp)\leqslant x$.
\begin{theorem}[Shimura--Taniyama, Weil, Hecke]
The elements $\theta_\fp\in \ST(A)$ are equidistributed with respect to the
Haar measure.
\end{theorem}
\begin{proof}
By \cite[Th.~10, 11]{serre-tate-1968}, for every
$r\in \X^\ast(\R_{F/\bQ}\Gm)$ induced by $\sigma\colon F\hookrightarrow \bC$,
there exists a Hecke character $\omega_r$ of $K$ such that
$L(r\circ \rho_l,s) = L(s,\omega_r)$. For $r = \sum m_\sigma \sigma$, we have
$L(r\circ \rho_l,s) = \prod L(\sigma\circ \rho_l,s)^{m_\sigma}$, so the general
result follows. Moreover $\omega_r$ is nontrivial if and only if
$\left.r\right|_{\ST(A)}$ is. Since $L$-functions of Hecke characters have the
desired analytic continuation and nonvanishing, the result follows.
\end{proof}
Recall that
$L(r\circ \rho_l,s) = \prod \left(1 - r(\theta_\fp) \N(\fp)^{-s}\right)^{-1}$
(this is the normalized $L$-function, not the algebraic $L$-function).
As in Chapter \ref{ch2:discrepancy}, the choice of an isomorphism
$\bT^d\simeq \ST(A)$ yields a definition of discrepancy
for sequences in $\ST(A)$. We call the ``Akiyama--Tanigawa conjecture for $A$''
the estimate $\D_N(\btheta) \ll N^{-\frac 1 2+\epsilon}$, where
$\btheta = (\theta_\fp)_\fp$ is the sequence of Satake parameters of $A$.
\begin{theorem}\label{AT->RH:AB}
The Akiyama--Tanigawa conjecture for $A$
implies the Riemann hypothesis for all $L(r\circ \rho_l,s)$ with
$\left. r\right|_{\ST(A)}$ nontrivial.
\end{theorem}
\begin{proof}
The Akiyama--Tanigawa estimate implies, via the Koksma--Hlawka inequality, an
estimate
$\left| \sum_{\N(\fp)\leqslant N} r(\theta_\fp)\right| \ll N^{\frac 1 2+\epsilon}$.
By Theorem \ref{thm:AT->RH:gp}, the function $L(r\circ \rho_l,s)$ satisfies
the Riemann hypothesis.
\end{proof}
It is natural to ask: does the Riemann hypothesis for all $L(r\circ \rho_l,s)$
imply the Akiyama--Tanigawa conjecture for $A$? We proceed to construct
$L$-functions coming from ``fake Satake parameters'' which provide evidence to
the contrary for nonmotivic (non-automorphic, in fact) sequences of Satake
parameters.
Give $\bT^d$ the Haar measure normalized to have total mass one.
Recall that for any $f\in L^1(\bT^d)$, the Fourier coefficients of $f$
are, for $\vm\in \bZ^d$:
\[
\widehat f(\vm) = \int_{\bT^d} e^{2\pi i \langle \vm,\vx\rangle} \, \dd \vx ,
\]
where $\langle \vm,\vx\rangle = m_1 x_1 + \cdots + m_d x_d$ is the usual inner
product. If $f$ is a continuous function on $\bT^d$ with $\widehat f(\vzero) = 0$
and $\bvx = (\vx_1,\vx_2,\dots)$ is equidistributed in $\bT^d$, then sums of
the form $\sum_{n\leqslant N} f(n \vx)$ will be $o(N)$. When $f$ is a character
of the torus, and $\bvx$ is the sequence of translates of an element
generating a dense subgroup, there is a much stronger bound.
\begin{theorem}
Fix $\vx\in \bT^d$ which generates a dense subgroup, with $\omega_{d-1}(\vx)$
finite. Then
\[
\left| \sum_{n\leqslant N} e^{2\pi i \langle \vm, n \vx\rangle}\right| \ll |\vm|_\infty^{\omega_{d-1}(\vx) + \epsilon}
\]
as $\vm$ ranges over $\bZ^d\smallsetminus \vzero$.
\end{theorem}
\begin{proof}
Since $\vx$ generates a dense subgroup of $\bT^d$,
$\langle \vm,\vx\rangle\in \bR\smallsetminus \bZ$. Thus Lemma
\ref{lem:bound-exp-sum} tells us that
\[
\left| \sum_{n\leqslant N} e^{2\pi i \langle \vm, n \vx\rangle}\right|
= \left| \sum_{n\leqslant N} e^{2\pi i n \langle \vm, \vx\rangle}\right|
\ll \dd(\langle \vm, \vx\rangle,\bZ)^{-1},
\]
and from Lemma \ref{lem:bound-distance}, we know that
$\dd(\langle \vm,\vx\rangle, \bZ)^{-1} \ll |\vm|_\infty^{\omega_{d-1}(x)+\epsilon}$.
The result follows.
\end{proof}
By writing any function as a Fourier series, we can apply this result to sums
of the form $\sum_{n\leqslant N} f(n \vx)$.
\begin{theorem}\label{thm:translates-bound-sum}
Let $\vx\in \bR^d$ with $\omega_{d-1}(\vx)$ finite. Let
$r>d+\omega_{d-1}(\vx)$, and fix $f\in C^r(\bT^d)$ with $\widehat f(\vzero)=0$.
Then $\left| \sum_{n\leqslant N} f(n \vx)\right| \ll 1$.
\end{theorem}
\begin{proof}
Write $f$ as a Fourier series:
$f(\vx) = \sum_{\vm\in \bZ^d} \widehat f(\vm) e^{2\pi i \langle \vm,\vx\rangle}$.
Since $\widehat f(\vzero)=0$, we can compute:
\begin{align}
\left| \sum_{n\leqslant N} f(n \vx)\right|
&= \left| \sum_{n\leqslant N} \sum_{\vm\in \bZ^d\smallsetminus \vzero} \widehat f(\vm) e^{2\pi i n \langle \vm,\vx\rangle}\right|\nonumber \\
&\leqslant \sum_{\vm\in \bZ^d\smallsetminus \vzero} \left|\widehat f(\vm)\right|\cdot \left| \sum_{n\leqslant N} e^{2\pi i n \langle \vm,\vx\rangle}\right| \nonumber \\
\label{eq:sum-converges}
&\ll \sum_{\vm\in \bZ^d\smallsetminus \vzero} \left|\widehat f(\vm)\right|\cdot |\vm|_\infty^{\omega_{d-1}(\vx) + \epsilon} .
\end{align}
Recall that an integral of $\phi$ over $\bR^d$ can be re-written in spherical
coordinates as $\int \phi(r,s) r^{d-1} \psi(s)\, \dd r \dd s$, where
$r$ ranges over $\bR^+$ with the usual Lebesgue measure, $s$ ranges over
$S^{d-1}$ with its rotation-invariant measure, and $\psi$ is bounded. Thus
$\int_{[1,\infty)^d} |\vx|_\infty^\alpha\, \dd x$ converges (and hence
$\sum_{\vm\in \bZ^d\smallsetminus \vzero} |\vm|_\infty^\alpha$ converges)
whenever as $d-1+\alpha < -1$. The sum \eqref{eq:sum-converges}
converges since the Fourier coefficients $\widehat f(\vm)$ converge to
zero faster than $|\vm|_\infty^{-r}$ \cite[Th.~8.22]{folland-1999},
$\epsilon>0$ is arbitrary, and $d-1-r+\omega_{d-1}(\vx) < -1$.
\end{proof}
Enumerate the primes of $K$ with increasing norms as $\fp_1,\fp_2,\fp_3,\dots$.
Let $\vx\in \bT^d$ generate a dense subgroup. The associated sequence of
``fake Satake parameters'' is $\bvx = (\vx_\fp)_\fp$, where we put
$\vx_{\fp_n} = n \vx$. For any fixed $w\geqslant \frac 1 d$, by Theorem
\ref{thm:jarnik}, we can find $\vx$ with $\omega_0(\vx) = w$ and
$\omega_{d-1}(\vx) = d w + d - 1$.
\begin{theorem}
The sequence $\bvx$ is equidistributed in $\bT^d$, with discrepancy
decaying as $\D_N(\bvx) \ll N^{-\frac{1}{d w+d} + \epsilon}$, and for which
$\D_N(\bvx) = \Omega\left(N^{-\frac{d}{w} - \epsilon}\right)$.
However, for any $f\in C^\infty(\bT^d)$ with $\widehat f(\vzero)=0$, the
Dirichlet series $L_f(\bx,s)$ satisfies the Riemann hypothesis.
\end{theorem}
\begin{proof}
The upper bound on discrepancy is Theorem \ref{thm:disc-upper-bound}, and
the lower bound is Theorem \ref{thm:disc-lower-bound}. For the functions $f$ in
question, Theorem \ref{thm:translates-bound-sum} gives an estimate (stronger
than) $\left| \sum_{\N(\fp)\leqslant N} f(\vx_\fp)\right|\ll N^{\frac 1 2}$, and
Theorem \ref{thm:AT->RH:gp} tells us this estimate implies the Riemann
hypothesis.
\end{proof}
This shows that for a sequence $\btheta = (\theta_\fp)$ in $\bT^d$, even if
each $L(r(\btheta),s)$ satisfies the Riemann hypothesis, we may not conclude
that the discrepancy of $\btheta$ decays like $N^{-\alpha}$ for any fixed
$\alpha$. So for CM abelian varieties, the Akiyama--Tanigawa conjecture does
not follow in a straightforward manner from the generalized Riemann hypothesis
together with basic facts about Dirichlet series. Note also that Theorem
\ref{thm:AT->RH:gp} does \emph{not} tell us that $L_f(\bvx,s)$ has analytic
continuation to $\Re > 0$, or that there are no zeros in $\Re > 0$. For, the
term $\sum_\fp \sum_{r\geqslant 2} \frac{f(\vx_\fp)^r}{r \N(\fp)^{r s}}$ will
not converge past $\Re > \frac 1 2$.