This repository has been archived by the owner on Aug 11, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 432
/
tensor_cpu-inl.h
executable file
·627 lines (594 loc) · 21.2 KB
/
tensor_cpu-inl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*!
* Copyright (c) 2014 by Contributors
* \file tensor_cpu-inl.h
* \brief implementation of CPU host code
* \author Bing Xu, Tianqi Chen
*/
#ifndef MSHADOW_TENSOR_CPU_INL_H_
#define MSHADOW_TENSOR_CPU_INL_H_
#include <cstring>
#include <functional>
#include <utility>
#include <vector>
#include "./base.h"
#include "./tensor.h"
#include "./packet-inl.h"
#include "./dot_engine-inl.h"
namespace mshadow {
template<>
inline void InitTensorEngine<cpu>(int dev_id) {
}
template<>
inline void ShutdownTensorEngine<cpu>(void) {
}
template<>
inline void SetDevice<cpu>(int devid) {
}
template<>
inline Stream<cpu> *NewStream<cpu>(bool create_blas_handle,
bool create_dnn_handle,
int dev_id) {
return new Stream<cpu>();
}
template<>
inline void DeleteStream<cpu>(Stream<cpu> *stream) {
delete stream;
}
template<int ndim>
inline std::ostream &operator<<(std::ostream &os, const Shape<ndim> &shape) { // NOLINT(*)
os << '(';
for (int i = 0; i < ndim; ++i) {
if (i != 0) os << ',';
os << shape[i];
}
// python style tuple
if (ndim == 1) os << ',';
os << ')';
return os;
}
template<typename xpu>
inline void *AllocHost_(size_t size);
template<typename xpu>
inline void FreeHost_(void * dptr);
#ifdef __CUDACC__
template<>
inline void *AllocHost_<gpu>(size_t size) {
void *dptr;
MSHADOW_CUDA_CALL(cudaMallocHost(&dptr, size, cudaHostAllocPortable));
return dptr;
}
template<>
inline void FreeHost_<gpu>(void *dptr) {
MSHADOW_CUDA_CALL(cudaFreeHost(dptr));
}
#endif
template<>
inline void *AllocHost_<cpu>(size_t size) {
size_t pitch;
return packet::AlignedMallocPitch(&pitch, size, 1);
}
template<>
inline void FreeHost_<cpu>(void *dptr) {
packet::AlignedFree(dptr);
}
template<typename xpu, int dim, typename DType>
inline void AllocHost(Tensor<cpu, dim, DType> *obj) {
obj->stride_ = obj->size(dim - 1);
CHECK_EQ(obj->CheckContiguous(), true) << "AllocHost";
void *dptr = AllocHost_<xpu>(obj->MSize() * sizeof(DType));
obj->dptr_ = reinterpret_cast<DType*>(dptr);
}
template<typename xpu, int dim, typename DType>
inline void FreeHost(Tensor<cpu, dim, DType> *obj) {
if (obj->dptr_ == NULL) {
LOG(FATAL) << "FreeHost:: double free";
}
FreeHost_<xpu>(obj->dptr_);
obj->dptr_ = NULL;
}
template<int dim, typename DType>
inline void AllocSpace(Tensor<cpu, dim, DType> *obj, bool pad) {
size_t pitch;
void *dptr;
if (pad) {
dptr = packet::AlignedMallocPitch
(&pitch, obj->size(dim - 1) * sizeof(DType), obj->shape_.FlatTo2D()[0]);
obj->stride_ = static_cast<index_t>(pitch / sizeof(DType));
} else {
obj->stride_ = obj->size(dim - 1);
dptr = packet::AlignedMallocPitch
(&pitch, obj->shape_.Size() * sizeof(DType), 1);
}
obj->dptr_ = reinterpret_cast<DType*>(dptr);
}
template<typename Device, typename DType, int dim>
inline Tensor<Device, dim, DType>
NewTensor(const Shape<dim> &shape, DType initv, bool pad, Stream<Device> *stream_) {
Tensor<Device, dim, DType> obj(shape);
obj.stream_ = stream_;
AllocSpace(&obj, pad);
MapExp<sv::saveto>(&obj, expr::ScalarExp<DType>(initv));
return obj;
}
template<int dim, typename DType>
inline void FreeSpace(Tensor<cpu, dim, DType> *obj) {
packet::AlignedFree(obj->dptr_);
obj->dptr_ = NULL;
}
template<int dim, typename DType>
inline void Copy(Tensor<cpu, dim, DType> _dst,
const Tensor<cpu, dim, DType> &_src,
Stream<cpu> *stream) {
CHECK_EQ(_dst.shape_, _src.shape_)
<< "Copy:shape mismatch:" << _dst.shape_ << " vs " << _src.shape_;
if (_dst.CheckContiguous() && _src.CheckContiguous()) {
memcpy(_dst.dptr_, _src.dptr_, sizeof(DType) * _dst.shape_.Size());
} else {
Tensor<cpu, 2, DType> dst = _dst.FlatTo2D();
Tensor<cpu, 2, DType> src = _src.FlatTo2D();
for (index_t y = 0; y < dst.size(0); ++y) {
memcpy(dst[y].dptr_, src[y].dptr_, sizeof(DType) * dst.size(1));
}
}
}
template<typename Saver, typename R, int dim,
typename DType, typename E>
inline void MapPlan(TRValue<R, cpu, dim, DType> *dst,
const expr::Plan<E, DType> &plan) {
Shape<2> shape = expr::ShapeCheck<dim, R>::Check(dst->self()).FlatTo2D();
expr::Plan<R, DType> dplan = expr::MakePlan(dst->self());
#ifndef __CUDACC__
#pragma omp parallel for
#endif
// temp remove openmp, as default setting throttles CPU
for (openmp_index_t y = 0; y < shape[0]; ++y) {
for (index_t x = 0; x < shape[1]; ++x) {
// trust your compiler! -_- they will optimize it
Saver::template Save<DType>(dplan.REval(y, x), plan.Eval(y, x));
}
}
}
// code to handle SSE optimization
template<bool pass_check, typename Saver,
typename R, int dim,
typename DType, typename E, int etype>
struct MapExpCPUEngine {
inline static void Map(TRValue<R, cpu, dim, DType> *dst,
const expr::Exp<E, DType, etype> &exp) {
MapPlan<Saver>(dst, MakePlan(exp.self()));
}
};
template<typename SV, int dim, typename DType, typename E, int etype>
struct MapExpCPUEngine<true, SV, Tensor<cpu, dim, DType>,
dim, DType, E, etype> {
inline static void Map(Tensor<cpu, dim, DType> *dst,
const expr::Exp<E, DType, etype> &exp) {
if (expr::PacketAlignCheck<dim, E, MSHADOW_DEFAULT_PACKET>::Check(exp.self()) &&
expr::PacketAlignCheck<dim, Tensor<cpu, dim, DType>, MSHADOW_DEFAULT_PACKET>::Check(*dst)) {
expr::MapPacketPlan<SV>(dst->self(),
expr::MakePacketPlan<MSHADOW_DEFAULT_PACKET>(exp.self()));
} else {
MapPlan<SV>(dst, MakePlan(exp.self()));
}
}
};
template<typename Saver, typename R, int dim,
typename DType, typename E, int etype>
inline void MapExp(TRValue<R, cpu, dim, DType> *dst,
const expr::Exp<E, DType, etype> &exp) {
expr::TypeCheckPass<expr::TypeCheck<cpu, dim, DType, E>::kMapPass>
::Error_All_Tensor_in_Exp_Must_Have_Same_Type();
Shape<dim> eshape = expr::ShapeCheck<dim, E>::Check(exp.self());
Shape<dim> dshape = expr::ShapeCheck<dim, R>::Check(dst->self());
CHECK(eshape[0] == 0 || eshape == dshape)
<< "Assignment: Shape of Tensors are not consistent with target, "
<< "eshape: " << eshape << " dshape:" << dshape;
MapExpCPUEngine<expr::PacketCheck<E, MSHADOW_DEFAULT_PACKET>::kPass,
Saver, R, dim, DType, E, etype>
::Map(dst->ptrself(), exp);
}
template<typename Saver, typename Reducer,
typename R, typename DType, typename E, int etype>
inline void MapReduceKeepLowest(TRValue<R, cpu, 1, DType> *dst,
const expr::Exp<E, DType, etype> &exp,
DType scale) {
expr::TypeCheckPass<expr::TypeCheck<cpu, 1, DType, E>::kRedPass>
::Error_TypeCheck_Not_Pass_For_Reduce_Exp();
Shape<2> eshape = expr::ShapeCheck<expr::ExpInfo<E>::kDim, E>
::Check(exp.self()).FlatTo2D();
Shape<1> dshape = expr::ShapeCheck<1, R>::Check(dst->self());
CHECK_EQ(eshape[1], dshape[0]) << "MapReduceKeepLowest::reduction dimension do not match";
CHECK_NE(eshape[0], 0U) << "can not reduce over empty tensor";
// execution
expr::Plan<R, DType> dplan = MakePlan(dst->self());
expr::Plan<E, DType> splan = MakePlan(exp.self());
#ifndef __CUDACC__
#pragma omp parallel for
#endif
for (openmp_index_t x = 0; x < eshape[1]; ++x) {
DType res = splan.Eval(0, x);
for (index_t y = 1; y < eshape[0]; ++y) {
Reducer::Reduce(res, splan.Eval(y, x));
}
Saver::template Save<DType>(dplan.REval(0, x), res * scale);
}
}
template<typename Saver, typename Reducer, int dimkeep,
typename R, typename DType, typename E, int etype>
inline void MapReduceKeepHighDim(TRValue<R, cpu, 1, DType> *dst,
const expr::Exp<E, DType, etype> &exp,
DType scale) {
expr::TypeCheckPass<expr::TypeCheck<cpu, dimkeep, DType, E>::kRedPass>
::Error_TypeCheck_Not_Pass_For_Reduce_Exp();
typedef Shape<expr::ExpInfo<E>::kDim> EShape;
EShape eshape = expr::ShapeCheck<expr::ExpInfo<E>::kDim, E>
::Check(exp.self());
Shape<1> dshape = expr::ShapeCheck<1, R>::Check(dst->self());
CHECK_EQ(eshape[dimkeep], dshape[0])
<< "MapReduceKeepHighDim::reduction dimension do not match";
// use equvalent form
Shape<4> pshape = Shape4(eshape.ProdShape(0, dimkeep),
eshape[dimkeep],
eshape.ProdShape(dimkeep + 1, EShape::kSubdim),
eshape[EShape::kSubdim]);
// execution
expr::Plan<R, DType> dplan = MakePlan(dst->self());
expr::Plan<E, DType> splan = MakePlan(exp.self());
#ifndef __CUDACC__
#pragma omp parallel for
#endif
for (openmp_index_t c = 0; c < pshape[1]; ++c) {
DType res; Reducer::SetInitValue(res);
for (index_t n = 0; n < pshape[0]; ++n) {
DType tres; Reducer::SetInitValue(tres);
for (index_t y = 0; y < pshape[2]; ++y) {
for (index_t x = 0; x < pshape[3]; ++x) {
Reducer::Reduce(tres,
splan.Eval((n * pshape[1] + c) * pshape[2] + y, x));
}
}
Reducer::Reduce(res, tres);
}
Saver::template Save<DType>(dplan.REval(0, c), DType(res * scale));
}
}
template<typename DType>
inline void Softmax(Tensor<cpu, 1, DType> dst,
const Tensor<cpu, 1, DType> &energy) {
DType mmax = energy[0];
for (index_t x = 1; x < dst.size(0); ++x) {
if (mmax < energy[x]) mmax = energy[x];
}
DType sum = DType(0.0f);
for (index_t x = 0; x < dst.size(0); ++x) {
dst[x] = std::exp(energy[x] - mmax);
sum += dst[x];
}
for (index_t x = 0; x < dst.size(0); ++x) {
dst[x] /= sum;
}
}
template<typename DType>
inline void SoftmaxGrad(Tensor<cpu, 2, DType> dst,
const Tensor<cpu, 2, DType> &src,
const Tensor<cpu, 1, DType> &label) {
#pragma omp parallel for
for (openmp_index_t y = 0; y < dst.size(0); ++y) {
const index_t k = static_cast<int>(label[y]);
for (index_t x = 0; x < dst.size(1); ++x) {
if (x == k) {
dst[y][k] = src[y][k] - 1.0f;
} else {
dst[y][x] = src[y][x];
}
}
}
}
template<typename DType>
inline void SmoothSoftmaxGrad(Tensor<cpu, 2, DType> dst,
const Tensor<cpu, 2, DType> &src,
const Tensor<cpu, 1, DType> &label,
const float alpha) {
const float smooth_grad = (alpha / (dst.size(1) - 1));
#pragma omp parallel for
for (openmp_index_t y = 0; y < dst.size(0); ++y) {
const index_t k = static_cast<int>(label[y]);
for (index_t x = 0; x < dst.size(1); ++x) {
if (x == k) {
dst[y][k] = src[y][k] - 1.0f + alpha;
} else {
dst[y][x] = src[y][x] - smooth_grad;
}
}
}
}
template<typename DType>
inline void SoftmaxGrad(Tensor<cpu, 2, DType> dst,
const Tensor<cpu, 2, DType> &src,
const Tensor<cpu, 1, DType> &label,
const DType &ignore_label) {
#pragma omp parallel for
for (openmp_index_t y = 0; y < dst.size(0); ++y) {
const int k = static_cast<int>(label[y]);
for (int x = 0; x < static_cast<int>(dst.size(1)); ++x) {
if (static_cast<int>(ignore_label) == k) {
dst[y][x] = 0.0f;
} else {
if (x == k) {
dst[y][k] = src[y][k] - 1.0f;
} else {
dst[y][x] = src[y][x];
}
}
}
}
}
template<typename DType>
inline void SmoothSoftmaxGrad(Tensor<cpu, 2, DType> dst,
const Tensor<cpu, 2, DType> &src,
const Tensor<cpu, 1, DType> &label,
const DType &ignore_label,
const float alpha) {
const float smooth_grad = (alpha / (dst.size(1) - 1));
#pragma omp parallel for
for (openmp_index_t y = 0; y < dst.size(0); ++y) {
const int k = static_cast<int>(label[y]);
for (int x = 0; x < static_cast<int>(dst.size(1)); ++x) {
if (static_cast<int>(ignore_label) == k) {
dst[y][x] = 0.0f;
} else {
if (x == k) {
dst[y][k] = src[y][k] - 1.0f + alpha;
} else {
dst[y][x] = src[y][x] - smooth_grad;
}
}
}
}
}
template<typename DType>
inline void SoftmaxGrad(Tensor<cpu, 3, DType> dst,
const Tensor<cpu, 3, DType> &src,
const Tensor<cpu, 2, DType> &label) {
#pragma omp parallel for
for (openmp_index_t n = 0; n < dst.size(2); ++n) {
for (index_t y = 0; y < dst.size(0); ++y) {
const int k = static_cast<int>(label[y][n]);
for (int x = 0; x < static_cast<int>(dst.size(1)); ++x) {
if (x == k) {
dst[y][k][n] = src[y][k][n] - 1.0f;
} else {
dst[y][x][n] = src[y][x][n];
}
}
}
}
}
template<typename DType>
inline void SmoothSoftmaxGrad(Tensor<cpu, 3, DType> dst,
const Tensor<cpu, 3, DType> &src,
const Tensor<cpu, 2, DType> &label,
const float alpha) {
const float smooth_grad = (alpha / (dst.size(1) - 1));
#pragma omp parallel for
for (openmp_index_t n = 0; n < dst.size(2); ++n) {
for (index_t y = 0; y < dst.size(0); ++y) {
const int k = static_cast<int>(label[y][n]);
for (int x = 0; x < static_cast<int>(dst.size(1)); ++x) {
if (x == k) {
dst[y][k][n] = src[y][k][n] - 1.0f + alpha;
} else {
dst[y][x][n] = src[y][x][n] - smooth_grad;
}
}
}
}
}
template<typename DType>
inline void SoftmaxGrad(Tensor<cpu, 3, DType> dst,
const Tensor<cpu, 3, DType> &src,
const Tensor<cpu, 2, DType> &label,
const DType &ignore_label) {
#pragma omp parallel for
for (openmp_index_t n = 0; n < dst.size(2); ++n) {
for (index_t y = 0; y < dst.size(0); ++y) {
const int k = static_cast<int>(label[y][n]);
if (k == static_cast<int>(ignore_label)) {
for (int x = 0; x < static_cast<int>(dst.size(1)); ++x) {
dst[y][x][n] = DType(0.0f);
}
} else {
for (int x = 0; x < static_cast<int>(dst.size(1)); ++x) {
if (x == k) {
dst[y][k][n] = src[y][k][n] - 1.0f;
} else {
dst[y][x][n] = src[y][x][n];
}
}
}
}
}
}
template<typename DType>
inline void SmoothSoftmaxGrad(Tensor<cpu, 3, DType> dst,
const Tensor<cpu, 3, DType> &src,
const Tensor<cpu, 2, DType> &label,
const DType &ignore_label,
const float alpha) {
const float smooth_grad = (alpha / (dst.size(1) - 1));
#pragma omp parallel for
for (openmp_index_t n = 0; n < dst.size(2); ++n) {
for (index_t y = 0; y < dst.size(0); ++y) {
const int k = static_cast<int>(label[y][n]);
if (k == static_cast<int>(ignore_label)) {
for (int x = 0; x < static_cast<int>(dst.size(1)); ++x) {
dst[y][x][n] = DType(0.0f);
}
} else {
for (int x = 0; x < static_cast<int>(dst.size(1)); ++x) {
if (x == k) {
dst[y][k][n] = src[y][k][n] - 1.0f + alpha;
} else {
dst[y][x][n] = src[y][x][n] - smooth_grad;
}
}
}
}
}
}
template<typename DType>
inline void Softmax(Tensor<cpu, 2, DType> dst,
const Tensor<cpu, 2, DType> &energy) {
CHECK_EQ(dst.shape_, energy.shape_) << "Softmax: shape mismatch";
#pragma omp parallel for
for (openmp_index_t y = 0; y < dst.size(0); ++y) {
Softmax(dst[y], energy[y]);
}
}
template<typename DType>
inline void Softmax(Tensor<cpu, 3, DType> dst,
const Tensor<cpu, 3, DType> &energy) {
CHECK_EQ(dst.shape_, energy.shape_) << "Softmax: shape mismatch";
#pragma omp parallel for
for (openmp_index_t y = 0; y < dst.size(0); ++y) {
for (index_t n = 0; n < dst.size(2); ++n) {
DType mmax = energy[y][0][n];
for (index_t x = 1; x < dst.size(1); ++x) {
if (mmax < energy[y][x][n]) mmax = energy[y][x][n];
}
DType sum = DType(0.0f);
for (index_t x = 0; x < dst.size(1); ++x) {
dst[y][x][n] = std::exp(energy[y][x][n] - mmax);
sum += dst[y][x][n];
}
for (index_t x = 0; x < dst.size(1); ++x) {
dst[y][x][n] /= sum;
}
}
}
}
template<typename IndexType, typename DType>
inline void AddTakeGrad(Tensor<cpu, 2, DType> dst,
const Tensor<cpu, 1, IndexType>& index,
const Tensor<cpu, 2, DType> &src) {
const int K = dst.shape_[0];
for (index_t y = 0; y < index.size(0); ++y) {
int j = index[y];
if (j <= 0) j = 0;
else if (j >= K) j = K - 1;
dst[j] += src[y];
}
}
template<typename IndexType, typename DType>
inline void AddTakeGradLargeBatch(Tensor<cpu, 2, DType> dst,
const Tensor<cpu, 1, IndexType>& sorted,
const Tensor<cpu, 1, IndexType>& index,
const Tensor<cpu, 2, DType> &src) {
for (index_t y = 0; y < sorted.size(0); ++y) {
dst[sorted[y]] += src[index[y]];
}
}
template<typename IndexType, typename DType>
inline void IndexFill(Tensor<cpu, 2, DType> dst,
const Tensor<cpu, 1, IndexType>& index,
const Tensor<cpu, 2, DType> &src) {
for (index_t y = 0; y < index.size(0); ++y) {
for (index_t j = 0; j < src.size(1); j++) {
dst[index[y]][j] = src[y][j];
}
}
}
template<typename KDType, typename VDType>
inline void SortByKey(Tensor<cpu, 1, KDType> keys, Tensor<cpu, 1, VDType> values,
bool is_ascend) {
CHECK_EQ(keys.CheckContiguous(), true);
CHECK_EQ(values.CheckContiguous(), true);
CHECK_EQ(keys.size(0), values.size(0))
<< "The sizes of key/value are not equal! keys_size: " << keys.size(0)
<< "values_size: " << values.size(0);
std::vector<size_t> idx(keys.size(0));
std::vector<KDType> keys_vec(keys.size(0));
std::vector<VDType> values_vec(values.size(0));
for (int i = 0; i < keys.size(0); i++) {
idx[i] = i;
keys_vec[i] = keys[i];
values_vec[i] = values[i];
}
if (is_ascend) {
std::stable_sort(idx.begin(), idx.end(),
[&keys_vec](size_t i1, size_t i2)
{return keys_vec[i1] < keys_vec[i2]; });
} else {
std::stable_sort(idx.begin(), idx.end(),
[&keys_vec](size_t i1, size_t i2)
{return keys_vec[i1] > keys_vec[i2]; });
}
for (index_t i = 0; i < values.size(0); i++) {
keys[i] = keys_vec[idx[i]];
values[i] = values_vec[idx[i]];
}
}
template<typename Device, typename VDType, typename SDType>
inline void VectorizedSort(Tensor<Device, 1, VDType> values, Tensor<Device, 1, SDType> segments) {
// We can sort each segments using two stable sorts
SortByKey(values, segments, true);
SortByKey(segments, values, true);
}
// blas related
template<typename Device, typename DType>
inline void VectorDot(Tensor<Device, 1, DType> dst,
const Tensor<Device, 1, DType> &lhs,
const Tensor<Device, 1, DType> &rhs) {
CHECK_EQ(lhs.size(0), rhs.size(0))
<< "VectorDot: Shape mismatch";
CHECK_EQ(dst.size(0), 1U)
<< "VectorDot: expect dst to be scalar";
expr::BLASEngine<Device, DType>::SetStream(lhs.stream_);
mshadow::expr::BLASEngine<Device, DType>::dot(
lhs.stream_, lhs.size(0), lhs.dptr_, 1, rhs.dptr_, 1, dst.dptr_);
}
template<bool transpose_left, bool transpose_right, typename Device, typename DType>
inline void BatchGEMM(Tensor<Device, 3, DType> dst,
const Tensor<Device, 3, DType> &lhs,
const Tensor<Device, 3, DType> &rhs,
DType alpha,
DType beta,
Tensor<Device, 1, DType*> workspace) {
index_t batch_size = dst.shape_[0];
expr::BLASEngine<Device, DType>::SetStream(dst.stream_);
Shape<3> sleft = transpose_left ? Shape3(lhs.shape_[0], lhs.shape_[2], lhs.shape_[1])
: lhs.shape_;
Shape<3> sright = transpose_right ? Shape3(rhs.shape_[0], rhs.shape_[2], rhs.shape_[1])
: rhs.shape_;
CHECK_EQ(dst.CheckContiguous(), true);
CHECK_EQ(lhs.CheckContiguous(), true);
CHECK_EQ(rhs.CheckContiguous(), true);
CHECK(sleft[0] == batch_size && sright[0] == batch_size)
<< "BatchGEMM: batchsize must be equal."
<< "dst: " << dst.shape_ << "\n"
<< "lhs: " << sleft << "\n"
<< "rhs: " << sright << "\n";
CHECK(dst.size(1) == sleft[1] && dst.size(2) == sright[2] && sleft[2] == sright[1])
<< "BatchGEMM: matrix shape mismatch"
<< "dst: " << dst.shape_ << "\n"
<< "lhs: " << sleft << "\n"
<< "rhs: " << sright << "\n";
CHECK(workspace.size(0) >= 3 * batch_size)
<< "Workspace Size must be bigger than " << 3 * batch_size;
CHECK_EQ(workspace.CheckContiguous(), true);
// use column major argument to compatible with most BLAS
expr::BLASEngine<Device, DType>::batched_gemm
(dst.stream_,
transpose_right, transpose_left,
transpose_right ? rhs.size(1) : rhs.size(2),
transpose_left ? lhs.size(2) : lhs.size(1),
transpose_right ? rhs.size(2) : rhs.size(1),
alpha,
rhs.dptr_, rhs.stride_,
lhs.dptr_, lhs.stride_,
beta,
dst.dptr_, dst.stride_, batch_size,
workspace.dptr_);
}
} // namespace mshadow
#endif // MSHADOW_TENSOR_CPU_INL_H_