-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmeta_architect.py
132 lines (104 loc) · 5.53 KB
/
meta_architect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import numpy as np
import torch.nn as nn
from torch.nn import functional as F
from torch.autograd import Variable
import pdb
def _concat(xs):
return torch.cat([x.view(-1) for x in xs])
class Architect(object):
def __init__(self, model, args):
self.network_momentum = args.momentum
self.network_weight_decay = args.weight_decay
self.model = model
self.update_step = args.update_step
self.meta_optimizer_theta = torch.optim.Adam(self.model.arch_parameters(),
lr=args.meta_lr_theta, betas=(0.5, 0.999), weight_decay=args.arch_weight_decay)
self.inner_optimizer_w = torch.optim.SGD(self.model.parameters(), lr=args.update_lr_w)
def _compute_unrolled_model(self, input, target, eta, network_optimizer):
loss = self.model._loss(input, target)
theta = _concat(self.model.parameters()).data
try:
moment = _concat(network_optimizer.state[v]['momentum_buffer'] for v in self.model.parameters()).mul_(self.network_momentum)
except:
moment = torch.zeros_like(theta)
dtheta = _concat(torch.autograd.grad(loss, self.model.parameters())).data + self.network_weight_decay*theta
unrolled_model = self._construct_model_from_theta(theta.sub(eta, moment+dtheta))
return unrolled_model
def _update_theta(self, x_spt, y_spt, x_qry, y_qry, criterion):
meta_batch_size, setsz, c_, h, w = x_spt.shape
#query_size = x_qry.shape[1]
#losses_q = [0 for _ in range(self.update_step + 1)] # losses_q[i] is the loss on step i
#corrects = [0 for _ in range(self.update_step + 1)]
''' copy weight and gradient '''
w_clone = dict([(k, v.clone()) for k, v in self.model.named_parameters()])
for p in self.model.arch_parameters():
p.grad = torch.zeros_like(p.data)
grad_clone = [p.grad.clone() for p in self.model.arch_parameters()]
for i in range(meta_batch_size):
for k in range(self.update_step):
# 1. run the i-th task and compute loss for k=1~K-1
logits = self.model(x_spt[i], alphas=self.model.arch_parameters())
loss = criterion(logits, y_spt[i])
self.inner_optimizer_w.zero_grad()
loss.backward()
self.inner_optimizer_w.step()
''' Compute loss of final step '''
logits_q = self.model(x_qry[i], alphas=self.model.arch_parameters())
loss_q = criterion(logits_q, y_qry[i])
''' Use first-order gradient average '''
self.inner_optimizer_w.zero_grad()
#pdb.set_trace()
for k, v in self.model.named_parameters():
v.data.copy_(w_clone[k])
loss_q.backward()
grad_clone = [k + v.grad.clone() for k, v in zip(grad_clone, self.model.arch_parameters())]
# optimize theta parameters
self.meta_optimizer_theta.zero_grad()
for k, v in zip(grad_clone, self.model.arch_parameters()):
v.grad.copy_(k / meta_batch_size)
self.meta_optimizer_theta.step()
def step(self, x_spt_search, y_spt_search, x_qry_search, y_qry_search, criterion):
self._update_theta(x_spt_search, y_spt_search, x_qry_search, y_qry_search, criterion)
def _backward_step(self, input_valid, target_valid):
loss = self.model._loss(input_valid, target_valid)
loss.backward()
def _backward_step_unrolled(self, input_train, target_train, input_valid, target_valid, eta, network_optimizer):
unrolled_model = self._compute_unrolled_model(input_train, target_train, eta, network_optimizer)
unrolled_loss = unrolled_model._loss(input_valid, target_valid)
unrolled_loss.backward()
dalpha = [v.grad for v in unrolled_model.arch_parameters()]
vector = [v.grad.data for v in unrolled_model.parameters()]
implicit_grads = self._hessian_vector_product(vector, input_train, target_train)
for g, ig in zip(dalpha, implicit_grads):
g.data.sub_(eta, ig.data)
for v, g in zip(self.model.arch_parameters(), dalpha):
if v.grad is None:
v.grad = Variable(g.data)
else:
v.grad.data.copy_(g.data)
def _construct_model_from_theta(self, theta):
model_new = self.model.new()
model_dict = self.model.state_dict()
params, offset = {}, 0
for k, v in self.model.named_parameters():
v_length = np.prod(v.size())
params[k] = theta[offset: offset+v_length].view(v.size())
offset += v_length
assert offset == len(theta)
model_dict.update(params)
model_new.load_state_dict(model_dict)
return model_new.cuda()
def _hessian_vector_product(self, vector, input, target, r=1e-2):
R = r / _concat(vector).norm()
for p, v in zip(self.model.parameters(), vector):
p.data.add_(R, v)
loss = self.model._loss(input, target)
grads_p = torch.autograd.grad(loss, self.model.arch_parameters())
for p, v in zip(self.model.parameters(), vector):
p.data.sub_(2*R, v)
loss = self.model._loss(input, target)
grads_n = torch.autograd.grad(loss, self.model.arch_parameters())
for p, v in zip(self.model.parameters(), vector):
p.data.add_(R, v)
return [(x-y).div_(2*R) for x, y in zip(grads_p, grads_n)]