-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_auto_maml_miniimagenet.py
224 lines (188 loc) · 10.1 KB
/
train_auto_maml_miniimagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import scipy.stats
import argparse
import os
import logging
import glob
import sys
import time
import random
from MiniImagenet import MiniImagenet
from meta_auto_maml_train import Meta
import utils.utils as utils
from utils.saver import Saver
from utils.summaries import TensorboardSummary
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from ptflops import get_model_complexity_info
import pdb
parser = argparse.ArgumentParser("mini-imagenet")
parser.add_argument('--dataset', type=str, default='mini-imagenet', help='dataset')
parser.add_argument('--checkname', type=str, default='auto-maml-train', help='checkname')
parser.add_argument('--run', type=str, default='run_auto_maml', help='run_path')
parser.add_argument('--data_path', type=str, default='', help='path to data')
parser.add_argument('--seed', type=int, default=222, help='random seed')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--epoch', type=int, help='epoch number', default=10)
parser.add_argument('--init_channels', type=int, default=16, help='num of init channels')
parser.add_argument('--layers', type=int, default=8, help='total number of layers')
parser.add_argument('--num_workers', type=int, default=8, help='number of workers')
parser.add_argument('--n_way', type=int, help='n way', default=5)
parser.add_argument('--k_spt', type=int, help='k shot for support set', default=1)
parser.add_argument('--k_qry', type=int, help='k shot for query set', default=15)
parser.add_argument('--batch_size', type=int, default=10000, help='batch size')
parser.add_argument('--test_batch_size', type=int, default=600, help='test batch size')
parser.add_argument('--meta_batch_size', type=int, help='meta batch size, namely task num', default=4)
parser.add_argument('--meta_test_batch_size', type=int, help='meta test batch size', default=1)
parser.add_argument('--report_freq', type=float, default=30, help='report frequency')
parser.add_argument('--test_freq', type=float, default=500, help='test frequency')
parser.add_argument('--img_size', type=int, help='img_size', default=84)
parser.add_argument('--imgc', type=int, help='imgc', default=3)
parser.add_argument('--meta_lr_w', type=float, help='meta-level outer learning rate (w)', default=1e-3)
parser.add_argument('--update_lr_w', type=float, help='task-level inner update learning rate (w)', default=0.01)
parser.add_argument('--update_step', type=int, help='task-level inner update steps', default=5)
parser.add_argument('--update_step_test', type=int, help='update steps for finetunning', default=10)
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--arch', type=str, default='AUTO_MAML_2', help='which architecture to use')
parser.add_argument('--pretrained_model', type=str, default='', help='path to pretrained model')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
args = parser.parse_args()
best_pred = 0
def main():
saver = Saver(args)
# set log
log_format = '%(asctime)s %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p',
filename=os.path.join(saver.experiment_dir, 'log.txt'), filemode='w')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logging.getLogger().addHandler(console)
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
# set seed
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.set_device(args.gpu)
cudnn.benchmark = True
cudnn.enabled=True
# set saver
saver.create_exp_dir(scripts_to_save=glob.glob('*.py') + glob.glob('*.sh') + glob.glob('*.yml'))
saver.save_experiment_config()
summary = TensorboardSummary(saver.experiment_dir)
writer = summary.create_summary()
logging.info(args)
device = torch.device('cuda')
criterion = nn.CrossEntropyLoss()
criterion = criterion.to(device)
''' Compute FLOPs and Params '''
maml = Meta(args, criterion)
flops, params = get_model_complexity_info(maml.model, (3, 84, 84), as_strings=False, print_per_layer_stat=True, verbose=True)
logging.info('FLOPs: {} MMac Params: {}'.format(flops / 10 ** 6, params))
maml = Meta(args, criterion).to(device)
tmp = filter(lambda x: x.requires_grad, maml.parameters())
num = sum(map(lambda x: np.prod(x.shape), tmp))
#logging.info(maml)
logging.info('Total trainable tensors: {}'.format(num))
# batch_size here means total episode number
mini = MiniImagenet(args.data_path, mode='train', n_way=args.n_way, k_shot=args.k_spt,
k_query=args.k_qry,
batch_size=args.batch_size, resize=args.img_size)
mini_test = MiniImagenet(args.data_path, mode='val', n_way=args.n_way, k_shot=args.k_spt,
k_query=args.k_qry,
batch_size=args.test_batch_size, resize=args.img_size)
train_loader = DataLoader(mini, args.meta_batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
test_loader = DataLoader(mini_test, args.meta_test_batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
# load pretrained model and inference
if args.pretrained_model:
checkpoint = torch.load(args.pretrained_model)
if isinstance(maml.model, torch.nn.DataParallel):
maml.module.load_state_dict(checkpoint['state_dict'])
else:
maml.load_state_dict(checkpoint['state_dict'])
if args.evaluate:
test_accs = meta_test(test_loader, maml, device, checkpoint['epoch'])
logging.info('[Epoch: {}]\t Test acc: {}'.format(checkpoint['epoch'], test_accs))
return
# Start training
for epoch in range(args.epoch):
# fetch batch_size num of episode each time
logging.info('--------- Epoch: {} ----------'.format(epoch))
train_accs = meta_train(train_loader, maml, device, epoch, writer, test_loader, saver)
logging.info('[Epoch: {}]\t Train acc: {}'.format(epoch, train_accs))
def meta_train(train_loader, maml, device, epoch, writer, test_loader, saver):
global best_pred
accs_all_train = []
batch_time = utils.AverageMeter()
data_time = utils.AverageMeter()
update_w_time = utils.AverageMeter()
end = time.time()
for step, (x_spt, y_spt, x_qry, y_qry) in enumerate(train_loader):
data_time.update(time.time() - end)
x_spt, y_spt, x_qry, y_qry = x_spt.to(device), y_spt.to(device), x_qry.to(device), y_qry.to(device)
accs, update_w_time = maml(x_spt, y_spt, x_qry, y_qry, update_w_time)
accs_all_train.append(accs)
batch_time.update(time.time() - end)
end = time.time()
writer.add_scalar('train/acc_iter', accs[-1], step + len(train_loader) * epoch)
if step % args.report_freq == 0:
logging.info('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'W {update_w_time.val:.3f} ({update_w_time.avg:.3f})\t'
'training acc: {accs}'.format(
epoch, step, len(train_loader),
batch_time=batch_time, data_time=data_time,
update_w_time=update_w_time, accs=accs))
if step % args.test_freq == 0:
test_accs = meta_test(test_loader, maml, device, epoch)
writer.add_scalar('val/acc', test_accs[-1], step // args.test_freq + (len(train_loader) // args.test_freq + 1) * epoch)
logging.info('[Epoch: {}]\t Test acc: {}'.format(epoch, test_accs))
# Save the best meta model.
new_pred = test_accs[-1]
if new_pred > best_pred:
is_best = True
best_pred = new_pred
else:
is_best = False
saver.save_checkpoint({
'epoch': epoch,
'state_dict': maml.module.state_dict() if isinstance(maml, nn.DataParallel) else maml.state_dict(),
'best_pred': best_pred,
}, is_best)
accs = np.array(accs_all_train).mean(axis=0).astype(np.float16)
return accs
def meta_test(test_loader, maml, device, epoch):
accs_all_test = []
batch_time = utils.AverageMeter()
data_time = utils.AverageMeter()
update_w_time = utils.AverageMeter()
end = time.time()
for step, (x_spt, y_spt, x_qry, y_qry) in enumerate(test_loader):
data_time.update(time.time() - end)
x_spt, y_spt, x_qry, y_qry = x_spt.squeeze(0).to(device), y_spt.squeeze(0).to(device), \
x_qry.squeeze(0).to(device), y_qry.squeeze(0).to(device)
accs, update_w_time = maml.finetunning(x_spt, y_spt, x_qry, y_qry, update_w_time)
accs_all_test.append(accs)
batch_time.update(time.time() - end)
end = time.time()
if step % args.report_freq == 0:
logging.info('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'W {update_w_time.val:.3f} ({update_w_time.avg:.3f})\t'
'test acc: {accs}'.format(
epoch, step, len(test_loader),
batch_time=batch_time, data_time=data_time,
update_w_time=update_w_time,accs=accs))
# [b, update_step+1]
accs = np.array(accs_all_test).mean(axis=0).astype(np.float16) # accs.shape=11
return accs
if __name__ == '__main__':
main()