-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_metrics.py
144 lines (135 loc) · 5.48 KB
/
my_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from einops import rearrange
import torch
from torchmetrics.image.fid import FrechetInceptionDistance
from torchmetrics.image.inception import InceptionScore
from torchmetrics.image.kid import KernelInceptionDistance
from tools.torchmetric_fdd import FrechetDinovDistance
from tools.torchmetric_fvd import FrechetVideoDistance
from tools.torchmetric_prdc import PRDC
from tools.torchmetric_sfid import sFrechetInceptionDistance
import torch.nn.functional as F
class MyMetric:
def __init__(self, device="cuda", choices=["fid"]):
self.choices = choices
if "fid" in choices:
self._fid = FrechetInceptionDistance(
feature=2048,
reset_real_features=True,
normalize=False,
sync_on_compute=True,
).to(device)
if "is" in choices:
self._is = InceptionScore().to(device)
if "kid" in choices:
self._kid = KernelInceptionDistance(subset_size=50).to(device)
if "prdc" in choices:
self._prdc = PRDC(nearest_k=5).to(device)
if "sfid" in choices:
self._sfid = sFrechetInceptionDistance().to(device)
if "fdd" in choices:
self._fdd = FrechetDinovDistance().to(device)
if "fvd" in choices:
self._fvd = FrechetVideoDistance().to(device)
def update_real(self, data):
if "fid" in self.choices:
self._fid.update(data, real=True)
if "is" in self.choices:
self._is.update(data)
if "kid" in self.choices:
self._kid.update(data, real=True)
if "prdc" in self.choices:
self._prdc.update(data, real=True)
if "sfid" in self.choices:
self._sfid.update(data, real=True)
if "fdd" in self.choices:
self._fdd.update(data, real=True)
if "fvd" in self.choices:
assert isinstance(data, torch.Tensor) and data.dtype == torch.uint8
# data is a torch.Tensor of type uint8
# data = (rearrange(data, "b t c h w -> b t h w c") / 255.0 - 0.5) * 2
b, t, c, h, w = data.shape
data = rearrange(data, "b t c h w -> (b t) c h w").float()
data = F.interpolate(
data, size=(224, 224), mode="bilinear", align_corners=False
)
data = rearrange(data, "(b t) c h w -> b t h w c", t=t).float()
self._fvd.update(data, real=False)
def update_fake(self, data):
if "fid" in self.choices:
self._fid.update(data, real=False)
if "kid" in self.choices:
self._kid.update(data, real=False)
if "prdc" in self.choices:
self._prdc.update(data, real=False)
if "sfid" in self.choices:
self._sfid.update(data, real=False)
if "fdd" in self.choices:
self._fdd.update(data, real=False)
if "fvd" in self.choices:
assert isinstance(data, torch.Tensor) and data.dtype == torch.uint8
# data is a torch.Tensor of type uint8
# data = (rearrange(data, "b t c h w -> b t h w c") / 255.0 - 0.5) * 2
b, t, c, h, w = data.shape
data = rearrange(data, "b t c h w -> (b t) c h w").float()
data = F.interpolate(
data, size=(224, 224), mode="bilinear", align_corners=False
)
data = rearrange(data, "(b t) c h w -> b t h w c", t=t).float()
self._fvd.update(data, real=False)
def compute(self):
print("computing torchmetrics...")
_result = dict()
if "fid" in self.choices:
fid = self._fid.compute().item()
_result["num_real"] = self._fid.real_features_num_samples
_result["num_fake"] = self._fid.fake_features_num_samples
_result["fid"] = fid
if "is" in self.choices:
_is_mean, _is_std = self._is.compute()
_result["is"] = _is_mean.item()
if "kid" in self.choices:
_kid_mean, _kid_std = self._kid.compute()
_result["kid_mean"] = _kid_mean.item()
_result["kid_std"] = _kid_std.item()
if "prdc" in self.choices:
_prdc_result = self._prdc.compute()
_prdc_result = {f"prdc_{k}": v for k, v in _prdc_result.items()}
_result.update(_prdc_result)
if "sfid" in self.choices:
sfid = self._sfid.compute().item()
_result["sfid"] = sfid
if "fdd" in self.choices:
fdd = self._fdd.compute().item()
_result["fdd"] = fdd
if "fvd" in self.choices:
fvd = self._fvd.compute().item()
_result["fvd"] = fvd
return _result
def reset(self):
if "fid" in self.choices:
self._fid.reset()
if "is" in self.choices:
self._is.reset()
if "kid" in self.choices:
self._kid.reset()
if "prdc" in self.choices:
self._prdc.reset()
if "sfid" in self.choices:
self._sfid.reset()
if "fdd" in self.choices:
self._fdd.reset()
if "fvd" in self.choices:
self._fvd.reset()
if __name__ == "__main__":
_metric = MyMetric(
args=None,
device="cuda",
choices=["fid", "is", "kid", "prdc", "sfid", "fdd"],
)
_metric.update_real(
torch.randint(0, 255, (100, 3, 299, 299), dtype=torch.uint8).to("cuda")
)
_metric.update_fake(
torch.randint(0, 255, (100, 3, 299, 299), dtype=torch.uint8).to("cuda")
)
print(_metric.compute())