-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy patharch.py
195 lines (166 loc) · 6.64 KB
/
arch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import numpy as np
from torch import optim, autograd
def concat(xs):
"""
flatten all tensor from [d1,d2,...dn] to [d]
and then concat all [d_1] to [d_1+d_2+d_3+...]
:param xs:
:return:
"""
return torch.cat([x.view(-1) for x in xs])
class Arch:
def __init__(self, model, args):
"""
:param model: network
:param args:
"""
self.momentum = args.momentum # momentum for optimizer of theta
self.wd = args.wd # weight decay for optimizer of theta
self.model = model # main model with respect to theta and alpha
# this is the optimizer to optimize alpha parameter
self.optimizer = optim.Adam(self.model.arch_parameters(),
lr=args.arch_lr,
betas=(0.5, 0.999),
weight_decay=args.arch_wd)
def comp_unrolled_model(self, x, target, eta, optimizer):
"""
loss on train set and then update w_pi, not-in-place
:param x:
:param target:
:param eta:
:param optimizer: optimizer of theta, not optimizer of alpha
:return:
"""
# forward to get loss
loss = self.model.loss(x, target)
# flatten current weights
theta = concat(self.model.parameters()).detach()
# theta: torch.Size([1930618])
# print('theta:', theta.shape)
try:
# fetch momentum data from theta optimizer
moment = concat(optimizer.state[v]['momentum_buffer'] for v in self.model.parameters())
moment.mul_(self.momentum)
except:
moment = torch.zeros_like(theta)
# flatten all gradients
dtheta = concat(autograd.grad(loss, self.model.parameters())).data
# indeed, here we implement a simple SGD with momentum and weight decay
# theta = theta - eta * (moment + weight decay + dtheta)
theta = theta.sub(eta, moment + dtheta + self.wd * theta)
# construct a new model
unrolled_model = self.construct_model_from_theta(theta)
return unrolled_model
def step(self, x_train, target_train, x_valid, target_valid, eta, optimizer, unrolled):
"""
update alpha parameter by manually computing the gradients
:param x_train:
:param target_train:
:param x_valid:
:param target_valid:
:param eta:
:param optimizer: theta optimizer
:param unrolled:
:return:
"""
# alpha optimizer
self.optimizer.zero_grad()
# compute the gradient and write it into tensor.grad
# instead of generated by loss.backward()
if unrolled:
self.backward_step_unrolled(x_train, target_train, x_valid, target_valid, eta, optimizer)
else:
# directly optimize alpha on w, instead of w_pi
self.backward_step(x_valid, target_valid)
self.optimizer.step()
def backward_step(self, x_valid, target_valid):
"""
simply train on validate set and backward
:param x_valid:
:param target_valid:
:return:
"""
loss = self.model.loss(x_valid, target_valid)
# both alpha and theta require grad but only alpha optimizer will
# step in current phase.
loss.backward()
def backward_step_unrolled(self, x_train, target_train, x_valid, target_valid, eta, optimizer):
"""
train on validate set based on update w_pi
:param x_train:
:param target_train:
:param x_valid:
:param target_valid:
:param eta: 0.01, according to author's comments
:param optimizer: theta optimizer
:return:
"""
# theta_pi = theta - lr * grad
unrolled_model = self.comp_unrolled_model(x_train, target_train, eta, optimizer)
# calculate loss on theta_pi
unrolled_loss = unrolled_model.loss(x_valid, target_valid)
# this will update theta_pi model, but NOT theta model
unrolled_loss.backward()
# grad(L(w', a), a), part of Eq. 6
dalpha = [v.grad for v in unrolled_model.arch_parameters()]
vector = [v.grad.data for v in unrolled_model.parameters()]
implicit_grads = self.hessian_vector_product(vector, x_train, target_train)
for g, ig in zip(dalpha, implicit_grads):
# g = g - eta * ig, from Eq. 6
g.data.sub_(eta, ig.data)
# write updated alpha into original model
for v, g in zip(self.model.arch_parameters(), dalpha):
if v.grad is None:
v.grad = g.data
else:
v.grad.data.copy_(g.data)
def construct_model_from_theta(self, theta):
"""
construct a new model with initialized weight from theta
it use .state_dict() and load_state_dict() instead of
.parameters() + fill_()
:param theta: flatten weights, need to reshape to original shape
:return:
"""
model_new = self.model.new()
model_dict = self.model.state_dict()
params, offset = {}, 0
for k, v in self.model.named_parameters():
v_length = v.numel()
# restore theta[] value to original shape
params[k] = theta[offset: offset + v_length].view(v.size())
offset += v_length
assert offset == len(theta)
model_dict.update(params)
model_new.load_state_dict(model_dict)
return model_new.cuda()
def hessian_vector_product(self, vector, x, target, r=1e-2):
"""
slightly touch vector value to estimate the gradient with respect to alpha
refer to Eq. 7 for more details.
:param vector: gradient.data of parameters theta
:param x:
:param target:
:param r:
:return:
"""
R = r / concat(vector).norm()
for p, v in zip(self.model.parameters(), vector):
# w+ = w + R * v
p.data.add_(R, v)
loss = self.model.loss(x, target)
# gradient with respect to alpha
grads_p = autograd.grad(loss, self.model.arch_parameters())
for p, v in zip(self.model.parameters(), vector):
# w- = (w+R*v) - 2R*v
p.data.sub_(2 * R, v)
loss = self.model.loss(x, target)
grads_n = autograd.grad(loss, self.model.arch_parameters())
for p, v in zip(self.model.parameters(), vector):
# w = (w+R*v) - 2R*v + R*v
p.data.add_(R, v)
h= [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)]
# h len: 2 h0 torch.Size([14, 8])
# print('h len:', len(h), 'h0', h[0].shape)
return h