-
Notifications
You must be signed in to change notification settings - Fork 1
/
Word_MCMC.py
150 lines (98 loc) · 4.54 KB
/
Word_MCMC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from matplotlib import pyplot as plt
@interact
def scrabble_expected(start_word = input_box(default=['a','a'],label = 'Initial word: '),
letter_walk = selector(['Scrabble','Uniform','Keyboard','Cycle' ], label = 'Walk on Individual Letters: '),
score_fn = selector(['Scrabble Score','Alphabetical (a=1, etc.)', 'Scrabble Count', 'Uniform', '# Vowels'], label = "Score function on letters:"), num_steps = input_box(default=100,label='Number of Steps: '),
disp = input_box(default = 10, label ='Number of states to display: '), auto_update=False):
scrabble_bag = ['a','a','a','a','a','a','a','a','a','b','b','c','c','d','d','d','d','e','e','e','e','e','e','e','e','e','e','e','e','f','f','g','g','g','h','h','i','i','i','i','i','i','i','i','i','j','k','l','l','l','l','m','m','n','n','n','n','n','n','o','o','o','o','o','o','o','o','p','p','q','r','r','r','r','r','r','s','s','s','s','t','t','t','t','t','t','u','u','u','u','v','v','w','w','x','y','y','z',' ',' ']
scrabble_points = {' ':0,'a':1,'b':3,'c':3,'d':2,'e':1,'f':4,'g':2,'h':4,'i':1,'j':8,'k':5,'l':1,'m':3,'n':1,'o':1,'p':3,'q':10,'r':1,'s':1,'t':1,'u':1,'v':4,'w':4,'x':8,'y':4,'z':10 }
scrabble_count = {' ':2,'a':9,'b':2,'c':2,'d':4,'e':12,'f':2,'g':3,'h':2,'i':9,'j':1,'k':1,'l':4,'m':2,'n':6,'o':8,'p':2,'q':1,
'r':6,'s':4,'t':6,'u':4,'v':2,'w':2,'x':1,'y':2,'z':1 }
alphabet=['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z',' ']
key1 ={'q':['w','a'],'w':['e','a','s'],'e':['r','s','d'],'r':['t','d','f'],'t':['y','f','g'],'y':['u','g','h'],'u':['i','h','j'],'i':['o','j','k'],'o':['p','k','l'],
'p':['l'],'a':['s','z'],'s':['d','z','x'],'d':['f','x','c'],'f':['g','c','v'],'g':['h','v','b'],'h':['j','b','n'],'j':['k','n','m'],'k':['l','m'],'z':['x'],'x':['c'],'c':['v',' '],'v':['b',' '],'b':['n',' '],'n':['m',' '],'m':[' ']}
cyclic = {alphabet[x]:[alphabet[(x+1)%27]] for x in range(27)}
g=Graph(cyclic)
h=Graph(key1)
if letter_walk == 'Scrabble':
bag = scrabble_bag
bvg = 1
elif letter_walk == 'Uniform':
bag = alphabet
bvg = 1
elif letter_walk == 'Cycle':
graph = g
bag = alphabet
bvg = 0
elif letter_walk == 'Keyboard':
graph = h
bag = []
for e in graph.edges():
bag.append(e[0])
bag.append(e[1])
bvg = 0
if score_fn == 'Scrabble Score':
scores = scrabble_points
if score_fn == 'Scrabble Count':
scores = scrabble_count
if score_fn == 'Uniform':
scores = {x:1 for x in alphabet}
if score_fn == '# Vowels':
scores = {x:1 for x in alphabet}
scores['a'] = 100
scores['e'] = 100
scores['i'] = 100
scores['o'] = 100
scores['u'] = 100
scores['y'] = 50
if score_fn == 'Alphabetical (a=1, etc.)':
scores = {alphabet[i]: i+1 for i in range(27)}
vals = [ ]
sums = [0]
means = []
error = []
state = start_word
letters = len(state)
expected = letters * mean([scores[x] for x in bag])
#print(expected)
for z in range(num_steps):
k = choice(range(letters))
old_state = state[k]
if bvg == 1:
new_state = choice(bag)
q = min(1,(float(scores[new_state])/float(scores[old_state]))*(float(bag.count(old_state))/float(bag.count(new_state))))
#print(old_state,new_state,q,scores[new_state],scores[old_state],bag.count(old_state),bag.count(new_state))
#print(state)
#print(vals[-1])
elif bvg == 0:
new_state = choice(graph.neighbors(old_state))
q = min(1, (float(scores[new_state])/float(scores[old_state]))*((1/float(len(graph.neighbors(new_state)))/(1/float(len(graph.neighbors(old_state)))))))
alpha = random()
if alpha < q:
state[k] = new_state
if z %int(num_steps/disp) == 0:
print(state)
vals.append(sum([scores[state[i]] for i in range(letters)]))
sums.append(sums[-1]+vals[-1])
#print(sums)
means.append(sums[-1]/((z+1)))
#print(means)
error.append(expected - means[-1])
plt.figure()
plt.plot(vals, 'o',markersize=2)
plt.title('Draw Values')
plt.xlabel('Roll #')
plt.show()
plt.figure()
plt.plot(means,'o',markersize=3)
plt.axhline(y=expected,color='r')
plt.title('Average of Tile Points')
plt.show()
plt.figure()
plt.plot(error,'o',markersize=3)
plt.axhline(y=0,color='r')
plt.title('Error: Expected - Empirical')
plt.show()
pretty_print('Final estimate: ', means[-1].n())
pretty_print('Actual expected value: ', expected.n())
pretty_print('Error: ', error[-1].n())