-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathapp.py
127 lines (107 loc) · 5.84 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import cv2
import json
import streamlit as st
from PIL import Image
from zipfile import ZipFile
from streamlit_drawable_canvas import st_canvas
from streamlit_javascript import st_javascript
from handler.asset import hash_bytes, download_assets, load_models, retrieve_image
from handler.bbox import generate_initial_drawing, transform_fabric_box, order_boxes4nom, get_patch
from handler.translator import hcmus_translate, hvdic_render
from toolbar import render_toolbar
from style import custom_css
st.set_page_config('Digitalize old Vietnamese handwritten script for historical document archiving', '🇻🇳', 'wide')
st.markdown(custom_css, unsafe_allow_html=True)
# download_assets()
det_model, rec_model = load_models()
col1, col2 = st.columns(2)
with st.sidebar:
st.image('imgs/cover.jpg')
st.header('Leverage Deep Learning to digitize old Vietnamese handwritten for historical document archiving')
st.info("Vietnamese Hán-Nôm digitalization using [VNPF's site](https://www.nomfoundation.org) as collected source")
uploaded_file = st.file_uploader('Choose a file:', type=['jpg', 'jpeg', 'png'])
url = st.text_input('Image URL:', 'https://www.nomfoundation.org/data/kieu/1866/page01b.jpg')
image_path = retrieve_image(uploaded_file, url)
print(image_path)
st.markdown('''
#### My digitalization series:
- [Optical Character Recognition](https://github.com/ds4v/NomNaOCR)
- [Neural Machine Translation](https://github.com/ds4v/NomNaNMT)
- [Web Application](https://github.com/ds4v/NomNaSite)
''')
st.markdown('''
<hr style="margin-top: 0;"/>
<p align="center">
<a href="https://github.com/18520339" target="_blank">
<img src="https://img.shields.io/badge/Quan%20Dang-100000?style=for-the-badge&logo=github" />
</a>
</p>
''', unsafe_allow_html=True)
with col1:
raw_image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
canvas_width = st_javascript('await fetch(window.location.href).then(response => window.innerWidth)')
# canvas_width = min(canvas_width, raw_image.shape[1])
canvas_height = raw_image.shape[0] * canvas_width / raw_image.shape[1] # For responsive canvas
size_ratio = canvas_height / raw_image.shape[0]
with st.spinner('Detecting bounding boxes containing text...'):
img_bytes = cv2.imencode('.jpg', raw_image)[1].tobytes()
key = hash_bytes(img_bytes)
boxes = det_model.predict_one_page(raw_image)
mode, rec_clicked = render_toolbar(key)
print(key)
canvas_result = st_canvas(
background_image = Image.open(image_path) if image_path else None,
fill_color = 'rgba(76, 175, 80, 0.3)',
width = max(canvas_width, 1),
height = max(canvas_height, 1),
stroke_width = 2,
stroke_color = 'red',
drawing_mode = 'rect' if mode == 'Drawing' else 'transform',
initial_drawing = generate_initial_drawing(boxes, size_ratio),
update_streamlit = rec_clicked,
key = f'canvas_{key}'
)
with col2:
canvas_boxes = []
if canvas_result.json_data and 'objects' in canvas_result.json_data:
canvas_boxes = order_boxes4nom([
transform_fabric_box(obj, size_ratio)
for obj in canvas_result.json_data['objects']
])
with st.spinner('Recognizing text in each bounding box...'):
with ZipFile('data/patches.zip', 'w') as zip_file:
with open(f'data/data.json', 'w', encoding='utf-8') as json_file:
saved_json = {
'num_boxes': len(canvas_boxes),
'height': raw_image.shape[0],
'width': raw_image.shape[1],
'patches': []
}
with open(f'data/data.csv', 'w', encoding='utf-8', newline='') as csv_file:
csv_file.write('x1,y1,x2,y2,x3,y3,x4,y4,nom,modern,height,width\n')
for idx, box in enumerate(canvas_boxes):
patch = get_patch(raw_image, box)
nom_text = rec_model.predict_one_patch(patch).strip()
modern_text = hcmus_translate(nom_text).strip()
with st.expander(f':red[**Text {idx + 1:02d}**:] {nom_text}'):
col21, col22 = st.columns([1, 7])
with col21:
st.image(patch)
with col22:
points = sum(box.tolist(), [])
points = ','.join([str(round(p)) for p in points])
saved_json['patches'].append({
'nom': nom_text, 'modern': modern_text, 'points': points,
'height': str(patch.shape[0]), 'width': str(patch.shape[1])
})
st.table(saved_json['patches'][-1])
st.markdown(f'''
[hcmus](https://www.clc.hcmus.edu.vn/?page_id=3039): {modern_text}<br/>
[hvdic](https://hvdic.thivien.net/transcript.php#trans): {hvdic_render(nom_text)}
''', unsafe_allow_html=True)
encoded_patch = cv2.imencode('.jpg', cv2.cvtColor(patch, cv2.COLOR_BGR2RGB))[1]
zip_file.writestr(f'img/{nom_text}.jpg', encoded_patch)
csv_file.write(points + f',{nom_text},{modern_text},{patch.shape[0]},{patch.shape[1]}\n')
json.dump(saved_json, json_file, ensure_ascii=False, indent=4)
zip_file.write('data/data.json')
zip_file.write('data/data.csv')