-
Notifications
You must be signed in to change notification settings - Fork 226
/
DeepWalk.py
164 lines (111 loc) · 3.83 KB
/
DeepWalk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#### Imports ####
import torch
import torch.nn as nn
import random
adj_list = [[1,2,3], [0,2,3], [0, 1, 3], [0, 1, 2], [5, 6], [4,6], [4, 5], [1, 3]]
size_vertex = len(adj_list) # number of vertices
#### Hyperparameters ####
w = 3 # window size
d = 2 # embedding size
y = 200 # walks per vertex
t = 6 # walk length
lr = 0.025 # learning rate
v=[0,1,2,3,4,5,6,7] #labels of available vertices
#### Random Walk ####
def RandomWalk(node,t):
walk = [node] # Walk starts from this node
for i in range(t-1):
node = adj_list[node][random.randint(0,len(adj_list[node])-1)]
walk.append(node)
return walk
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.phi = nn.Parameter(torch.rand((size_vertex, d), requires_grad=True))
self.phi2 = nn.Parameter(torch.rand((d, size_vertex), requires_grad=True))
def forward(self, one_hot):
hidden = torch.matmul(one_hot, self.phi)
out = torch.matmul(hidden, self.phi2)
return out
model = Model()
def skip_gram(wvi, w):
for j in range(len(wvi)):
for k in range(max(0,j-w) , min(j+w, len(wvi))):
#generate one hot vector
one_hot = torch.zeros(size_vertex)
one_hot[wvi[j]] = 1
out = model(one_hot)
loss = torch.log(torch.sum(torch.exp(out))) - out[wvi[k]]
loss.backward()
for param in model.parameters():
param.data.sub_(lr*param.grad)
param.grad.data.zero_()
for i in range(y):
random.shuffle(v)
for vi in v:
wvi=RandomWalk(vi,t)
skip_gram(wvi, w)
print(model.phi)
#### Hierarchical Softmax ####
def func_L(w):
"""
Parameters
----------
w: Leaf node.
Returns
-------
count: The length of path from the root node to the given vertex.
"""
count=1
while(w!=1):
count+=1
w//=2
return count
# func_n returns the nth node in the path from the root node to the given vertex
def func_n(w, j):
li=[w]
while(w!=1):
w = w//2
li.append(w)
li.reverse()
return li[j]
def sigmoid(x):
out = 1/(1+torch.exp(-x))
return out
class HierarchicalModel(torch.nn.Module):
def __init__(self):
super(HierarchicalModel, self).__init__()
self.phi = nn.Parameter(torch.rand((size_vertex, d), requires_grad=True))
self.prob_tensor = nn.Parameter(torch.rand((2*size_vertex, d), requires_grad=True))
def forward(self, wi, wo):
one_hot = torch.zeros(size_vertex)
one_hot[wi] = 1
w = size_vertex + wo
h = torch.matmul(one_hot,self.phi)
p = torch.tensor([1.0])
for j in range(1, func_L(w)-1):
mult = -1
if(func_n(w, j+1)==2*func_n(w, j)): # Left child
mult = 1
p = p*sigmoid(mult*torch.matmul(self.prob_tensor[func_n(w,j)], h))
return p
hierarchicalModel = HierarchicalModel()
def HierarchicalSkipGram(wvi, w):
for j in range(len(wvi)):
for k in range(max(0,j-w) , min(j+w, len(wvi))):
#generate one hot vector
prob = hierarchicalModel(wvi[j], wvi[k])
loss = - torch.log(prob)
loss.backward()
for param in hierarchicalModel.parameters():
param.data.sub_(lr*param.grad)
param.grad.data.zero_()
for i in range(y):
random.shuffle(v)
for vi in v:
wvi = RandomWalk(vi,t)
HierarchicalSkipGram(wvi, w)
for i in range(8):
for j in range(8):
print((hierarchicalModel(i,j).item()*100)//1, end=' ')
print(end = '\n')