-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathcolumn_reader.cpp
881 lines (769 loc) · 35.3 KB
/
column_reader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
#include "column_reader.hpp"
#include "parquet_timestamp.hpp"
#include "utf8proc_wrapper.hpp"
#include "parquet_reader.hpp"
#include "boolean_column_reader.hpp"
#include "callback_column_reader.hpp"
#include "parquet_decimal_utils.hpp"
#include "list_column_reader.hpp"
#include "string_column_reader.hpp"
#include "struct_column_reader.hpp"
#include "templated_column_reader.hpp"
#include "snappy.h"
#include "miniz_wrapper.hpp"
#include "zstd.h"
#include <iostream>
#include "duckdb.hpp"
#ifndef DUCKDB_AMALGAMATION
#include "duckdb/common/types/blob.hpp"
#include "duckdb/common/types/chunk_collection.hpp"
#endif
namespace duckdb {
using duckdb_parquet::format::CompressionCodec;
using duckdb_parquet::format::ConvertedType;
using duckdb_parquet::format::Encoding;
using duckdb_parquet::format::PageType;
using duckdb_parquet::format::Type;
const uint32_t RleBpDecoder::BITPACK_MASKS[] = {
0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023,
2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151,
4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647};
const uint8_t RleBpDecoder::BITPACK_DLEN = 8;
ColumnReader::ColumnReader(ParquetReader &reader, LogicalType type_p, const SchemaElement &schema_p, idx_t file_idx_p,
idx_t max_define_p, idx_t max_repeat_p)
: schema(schema_p), file_idx(file_idx_p), max_define(max_define_p), max_repeat(max_repeat_p), reader(reader),
type(move(type_p)), page_rows_available(0) {
// dummies for Skip()
none_filter.none();
dummy_define.resize(reader.allocator, STANDARD_VECTOR_SIZE);
dummy_repeat.resize(reader.allocator, STANDARD_VECTOR_SIZE);
}
ColumnReader::~ColumnReader() {
}
const LogicalType &ColumnReader::Type() {
return type;
}
const SchemaElement &ColumnReader::Schema() {
return schema;
}
idx_t ColumnReader::GroupRowsAvailable() {
return group_rows_available;
}
unique_ptr<BaseStatistics> ColumnReader::Stats(const std::vector<ColumnChunk> &columns) {
if (Type().id() == LogicalTypeId::LIST || Type().id() == LogicalTypeId::STRUCT ||
Type().id() == LogicalTypeId::MAP) {
return nullptr;
}
return ParquetStatisticsUtils::TransformColumnStatistics(Schema(), Type(), columns[file_idx]);
}
void ColumnReader::Plain(shared_ptr<ByteBuffer> plain_data, uint8_t *defines, idx_t num_values, // NOLINT
parquet_filter_t &filter, idx_t result_offset, Vector &result) {
throw NotImplementedException("Plain");
}
void ColumnReader::Dictionary(shared_ptr<ByteBuffer> dictionary_data, idx_t num_entries) { // NOLINT
throw NotImplementedException("Dictionary");
}
void ColumnReader::Offsets(uint32_t *offsets, uint8_t *defines, idx_t num_values, parquet_filter_t &filter,
idx_t result_offset, Vector &result) {
throw NotImplementedException("Offsets");
}
void ColumnReader::DictReference(Vector &result) {
}
void ColumnReader::PlainReference(shared_ptr<ByteBuffer>, Vector &result) { // NOLINT
}
void ColumnReader::InitializeRead(const std::vector<ColumnChunk> &columns, TProtocol &protocol_p) {
D_ASSERT(file_idx < columns.size());
chunk = &columns[file_idx];
protocol = &protocol_p;
D_ASSERT(chunk);
D_ASSERT(chunk->__isset.meta_data);
if (chunk->__isset.file_path) {
throw std::runtime_error("Only inlined data files are supported (no references)");
}
// ugh. sometimes there is an extra offset for the dict. sometimes it's wrong.
chunk_read_offset = chunk->meta_data.data_page_offset;
if (chunk->meta_data.__isset.dictionary_page_offset && chunk->meta_data.dictionary_page_offset >= 4) {
// this assumes the data pages follow the dict pages directly.
chunk_read_offset = chunk->meta_data.dictionary_page_offset;
}
group_rows_available = chunk->meta_data.num_values;
}
void ColumnReader::PrepareRead(parquet_filter_t &filter) {
dict_decoder.reset();
defined_decoder.reset();
block.reset();
PageHeader page_hdr;
page_hdr.read(protocol);
// page_hdr.printTo(std::cout);
// std::cout << '\n';
PreparePage(page_hdr.compressed_page_size, page_hdr.uncompressed_page_size);
switch (page_hdr.type) {
case PageType::DATA_PAGE_V2:
case PageType::DATA_PAGE:
PrepareDataPage(page_hdr);
break;
case PageType::DICTIONARY_PAGE:
Dictionary(move(block), page_hdr.dictionary_page_header.num_values);
break;
default:
break; // ignore INDEX page type and any other custom extensions
}
}
void ColumnReader::PreparePage(idx_t compressed_page_size, idx_t uncompressed_page_size) {
auto &trans = (ThriftFileTransport &)*protocol->getTransport();
block = make_shared<ResizeableBuffer>(reader.allocator, compressed_page_size + 1);
trans.read((uint8_t *)block->ptr, compressed_page_size);
shared_ptr<ResizeableBuffer> unpacked_block;
if (chunk->meta_data.codec != CompressionCodec::UNCOMPRESSED) {
unpacked_block = make_shared<ResizeableBuffer>(reader.allocator, uncompressed_page_size + 1);
}
switch (chunk->meta_data.codec) {
case CompressionCodec::UNCOMPRESSED:
break;
case CompressionCodec::GZIP: {
MiniZStream s;
s.Decompress((const char *)block->ptr, compressed_page_size, (char *)unpacked_block->ptr,
uncompressed_page_size);
block = move(unpacked_block);
break;
}
case CompressionCodec::SNAPPY: {
auto res =
duckdb_snappy::RawUncompress((const char *)block->ptr, compressed_page_size, (char *)unpacked_block->ptr);
if (!res) {
throw std::runtime_error("Decompression failure");
}
block = move(unpacked_block);
break;
}
case CompressionCodec::ZSTD: {
auto res = duckdb_zstd::ZSTD_decompress((char *)unpacked_block->ptr, uncompressed_page_size,
(const char *)block->ptr, compressed_page_size);
if (duckdb_zstd::ZSTD_isError(res) || res != (size_t)uncompressed_page_size) {
throw std::runtime_error("ZSTD Decompression failure");
}
block = move(unpacked_block);
break;
}
default: {
std::stringstream codec_name;
codec_name << chunk->meta_data.codec;
throw std::runtime_error("Unsupported compression codec \"" + codec_name.str() +
"\". Supported options are uncompressed, gzip or snappy");
break;
}
}
}
void ColumnReader::PrepareDataPage(PageHeader &page_hdr) {
if (page_hdr.type == PageType::DATA_PAGE && !page_hdr.__isset.data_page_header) {
throw std::runtime_error("Missing data page header from data page");
}
if (page_hdr.type == PageType::DATA_PAGE_V2 && !page_hdr.__isset.data_page_header_v2) {
throw std::runtime_error("Missing data page header from data page v2");
}
page_rows_available = page_hdr.type == PageType::DATA_PAGE ? page_hdr.data_page_header.num_values
: page_hdr.data_page_header_v2.num_values;
auto page_encoding = page_hdr.type == PageType::DATA_PAGE ? page_hdr.data_page_header.encoding
: page_hdr.data_page_header_v2.encoding;
if (HasRepeats()) {
uint32_t rep_length = page_hdr.type == PageType::DATA_PAGE
? block->read<uint32_t>()
: page_hdr.data_page_header_v2.repetition_levels_byte_length;
block->available(rep_length);
repeated_decoder = make_unique<RleBpDecoder>((const uint8_t *)block->ptr, rep_length,
RleBpDecoder::ComputeBitWidth(max_repeat));
block->inc(rep_length);
}
if (HasDefines()) {
uint32_t def_length = page_hdr.type == PageType::DATA_PAGE
? block->read<uint32_t>()
: page_hdr.data_page_header_v2.definition_levels_byte_length;
block->available(def_length);
defined_decoder = make_unique<RleBpDecoder>((const uint8_t *)block->ptr, def_length,
RleBpDecoder::ComputeBitWidth(max_define));
block->inc(def_length);
}
switch (page_encoding) {
case Encoding::RLE_DICTIONARY:
case Encoding::PLAIN_DICTIONARY: {
// TODO there seems to be some confusion whether this is in the bytes for v2
// where is it otherwise??
auto dict_width = block->read<uint8_t>();
// TODO somehow dict_width can be 0 ?
dict_decoder = make_unique<RleBpDecoder>((const uint8_t *)block->ptr, block->len, dict_width);
block->inc(block->len);
break;
}
case Encoding::PLAIN:
// nothing to do here, will be read directly below
break;
default:
throw std::runtime_error("Unsupported page encoding");
}
}
idx_t ColumnReader::Read(uint64_t num_values, parquet_filter_t &filter, uint8_t *define_out, uint8_t *repeat_out,
Vector &result) {
// we need to reset the location because multiple column readers share the same protocol
auto &trans = (ThriftFileTransport &)*protocol->getTransport();
trans.SetLocation(chunk_read_offset);
idx_t result_offset = 0;
auto to_read = num_values;
while (to_read > 0) {
while (page_rows_available == 0) {
PrepareRead(filter);
}
D_ASSERT(block);
auto read_now = MinValue<idx_t>(to_read, page_rows_available);
D_ASSERT(read_now <= STANDARD_VECTOR_SIZE);
if (HasRepeats()) {
D_ASSERT(repeated_decoder);
repeated_decoder->GetBatch<uint8_t>((char *)repeat_out + result_offset, read_now);
}
if (HasDefines()) {
D_ASSERT(defined_decoder);
defined_decoder->GetBatch<uint8_t>((char *)define_out + result_offset, read_now);
}
if (dict_decoder) {
// we need the null count because the offsets and plain values have no entries for nulls
idx_t null_count = 0;
if (HasDefines()) {
for (idx_t i = 0; i < read_now; i++) {
if (define_out[i + result_offset] != max_define) {
null_count++;
}
}
}
offset_buffer.resize(reader.allocator, sizeof(uint32_t) * (read_now - null_count));
dict_decoder->GetBatch<uint32_t>(offset_buffer.ptr, read_now - null_count);
DictReference(result);
Offsets((uint32_t *)offset_buffer.ptr, define_out, read_now, filter, result_offset, result);
} else {
PlainReference(block, result);
Plain(block, define_out, read_now, filter, result_offset, result);
}
result_offset += read_now;
page_rows_available -= read_now;
to_read -= read_now;
}
group_rows_available -= num_values;
chunk_read_offset = trans.GetLocation();
return num_values;
}
void ColumnReader::Skip(idx_t num_values) {
dummy_define.zero();
dummy_repeat.zero();
// TODO this can be optimized, for example we dont actually have to bitunpack offsets
Vector dummy_result(type, nullptr);
auto values_read =
Read(num_values, none_filter, (uint8_t *)dummy_define.ptr, (uint8_t *)dummy_repeat.ptr, dummy_result);
if (values_read != num_values) {
throw std::runtime_error("Row count mismatch when skipping rows");
}
}
//===--------------------------------------------------------------------===//
// String Column Reader
//===--------------------------------------------------------------------===//
StringColumnReader::StringColumnReader(ParquetReader &reader, LogicalType type_p, const SchemaElement &schema_p,
idx_t schema_idx_p, idx_t max_define_p, idx_t max_repeat_p)
: TemplatedColumnReader<string_t, StringParquetValueConversion>(reader, move(type_p), schema_p, schema_idx_p,
max_define_p, max_repeat_p) {
fixed_width_string_length = 0;
if (schema_p.type == Type::FIXED_LEN_BYTE_ARRAY) {
D_ASSERT(schema_p.__isset.type_length);
fixed_width_string_length = schema_p.type_length;
}
}
uint32_t StringColumnReader::VerifyString(const char *str_data, uint32_t str_len) {
if (Type() != LogicalTypeId::VARCHAR) {
return str_len;
}
// verify if a string is actually UTF8, and if there are no null bytes in the middle of the string
// technically Parquet should guarantee this, but reality is often disappointing
UnicodeInvalidReason reason;
size_t pos;
auto utf_type = Utf8Proc::Analyze(str_data, str_len, &reason, &pos);
if (utf_type == UnicodeType::INVALID) {
if (reason == UnicodeInvalidReason::NULL_BYTE) {
// for null bytes we just truncate the string
return pos;
}
throw InvalidInputException("Invalid string encoding found in Parquet file: value \"" +
Blob::ToString(string_t(str_data, str_len)) + "\" is not valid UTF8!");
}
return str_len;
}
void StringColumnReader::Dictionary(shared_ptr<ByteBuffer> data, idx_t num_entries) {
dict = move(data);
dict_strings = unique_ptr<string_t[]>(new string_t[num_entries]);
for (idx_t dict_idx = 0; dict_idx < num_entries; dict_idx++) {
uint32_t str_len = dict->read<uint32_t>();
dict->available(str_len);
auto actual_str_len = VerifyString(dict->ptr, str_len);
dict_strings[dict_idx] = string_t(dict->ptr, actual_str_len);
dict->inc(str_len);
}
}
class ParquetStringVectorBuffer : public VectorBuffer {
public:
explicit ParquetStringVectorBuffer(shared_ptr<ByteBuffer> buffer_p)
: VectorBuffer(VectorBufferType::OPAQUE_BUFFER), buffer(move(buffer_p)) {
}
private:
shared_ptr<ByteBuffer> buffer;
};
void StringColumnReader::DictReference(Vector &result) {
StringVector::AddBuffer(result, make_buffer<ParquetStringVectorBuffer>(dict));
}
void StringColumnReader::PlainReference(shared_ptr<ByteBuffer> plain_data, Vector &result) {
StringVector::AddBuffer(result, make_buffer<ParquetStringVectorBuffer>(move(plain_data)));
}
string_t StringParquetValueConversion::DictRead(ByteBuffer &dict, uint32_t &offset, ColumnReader &reader) {
auto &dict_strings = ((StringColumnReader &)reader).dict_strings;
return dict_strings[offset];
}
string_t StringParquetValueConversion::PlainRead(ByteBuffer &plain_data, ColumnReader &reader) {
auto &scr = ((StringColumnReader &)reader);
uint32_t str_len = scr.fixed_width_string_length == 0 ? plain_data.read<uint32_t>() : scr.fixed_width_string_length;
plain_data.available(str_len);
auto actual_str_len = ((StringColumnReader &)reader).VerifyString(plain_data.ptr, str_len);
auto ret_str = string_t(plain_data.ptr, actual_str_len);
plain_data.inc(str_len);
return ret_str;
}
void StringParquetValueConversion::PlainSkip(ByteBuffer &plain_data, ColumnReader &reader) {
auto &scr = ((StringColumnReader &)reader);
uint32_t str_len = scr.fixed_width_string_length == 0 ? plain_data.read<uint32_t>() : scr.fixed_width_string_length;
plain_data.inc(str_len);
}
//===--------------------------------------------------------------------===//
// List Column Reader
//===--------------------------------------------------------------------===//
idx_t ListColumnReader::Read(uint64_t num_values, parquet_filter_t &filter, uint8_t *define_out, uint8_t *repeat_out,
Vector &result_out) {
idx_t result_offset = 0;
auto result_ptr = FlatVector::GetData<list_entry_t>(result_out);
auto &result_mask = FlatVector::Validity(result_out);
D_ASSERT(ListVector::GetListSize(result_out) == 0);
// if an individual list is longer than STANDARD_VECTOR_SIZE we actually have to loop the child read to fill it
bool finished = false;
while (!finished) {
idx_t child_actual_num_values = 0;
// check if we have any overflow from a previous read
if (overflow_child_count == 0) {
// we don't: read elements from the child reader
child_defines.zero();
child_repeats.zero();
// we don't know in advance how many values to read because of the beautiful repetition/definition setup
// we just read (up to) a vector from the child column, and see if we have read enough
// if we have not read enough, we read another vector
// if we have read enough, we leave any unhandled elements in the overflow vector for a subsequent read
auto child_req_num_values =
MinValue<idx_t>(STANDARD_VECTOR_SIZE, child_column_reader->GroupRowsAvailable());
read_vector.ResetFromCache(read_cache);
child_actual_num_values = child_column_reader->Read(child_req_num_values, child_filter, child_defines_ptr,
child_repeats_ptr, read_vector);
} else {
// we do: use the overflow values
child_actual_num_values = overflow_child_count;
overflow_child_count = 0;
}
if (child_actual_num_values == 0) {
// no more elements available: we are done
break;
}
read_vector.Verify(child_actual_num_values);
idx_t current_chunk_offset = ListVector::GetListSize(result_out);
// hard-won piece of code this, modify at your own risk
// the intuition is that we have to only collapse values into lists that are repeated *on this level*
// the rest is pretty much handed up as-is as a single-valued list or NULL
idx_t child_idx;
for (child_idx = 0; child_idx < child_actual_num_values; child_idx++) {
if (child_repeats_ptr[child_idx] == max_repeat) {
// value repeats on this level, append
D_ASSERT(result_offset > 0);
result_ptr[result_offset - 1].length++;
continue;
}
if (result_offset >= num_values) {
// we ran out of output space
finished = true;
break;
}
if (child_defines_ptr[child_idx] >= max_define) {
// value has been defined down the stack, hence its NOT NULL
result_ptr[result_offset].offset = child_idx + current_chunk_offset;
result_ptr[result_offset].length = 1;
} else if (child_defines_ptr[child_idx] == max_define - 1) {
// empty list
result_ptr[result_offset].offset = child_idx + current_chunk_offset;
result_ptr[result_offset].length = 0;
} else {
// value is NULL somewhere up the stack
result_mask.SetInvalid(result_offset);
result_ptr[result_offset].offset = 0;
result_ptr[result_offset].length = 0;
}
repeat_out[result_offset] = child_repeats_ptr[child_idx];
define_out[result_offset] = child_defines_ptr[child_idx];
result_offset++;
}
// actually append the required elements to the child list
ListVector::Append(result_out, read_vector, child_idx);
// we have read more values from the child reader than we can fit into the result for this read
// we have to pass everything from child_idx to child_actual_num_values into the next call
if (child_idx < child_actual_num_values && result_offset == num_values) {
read_vector.Slice(read_vector, child_idx);
overflow_child_count = child_actual_num_values - child_idx;
read_vector.Verify(overflow_child_count);
// move values in the child repeats and defines *backward* by child_idx
for (idx_t repdef_idx = 0; repdef_idx < overflow_child_count; repdef_idx++) {
child_defines_ptr[repdef_idx] = child_defines_ptr[child_idx + repdef_idx];
child_repeats_ptr[repdef_idx] = child_repeats_ptr[child_idx + repdef_idx];
}
}
}
result_out.Verify(result_offset);
return result_offset;
}
ListColumnReader::ListColumnReader(ParquetReader &reader, LogicalType type_p, const SchemaElement &schema_p,
idx_t schema_idx_p, idx_t max_define_p, idx_t max_repeat_p,
unique_ptr<ColumnReader> child_column_reader_p)
: ColumnReader(reader, move(type_p), schema_p, schema_idx_p, max_define_p, max_repeat_p),
child_column_reader(move(child_column_reader_p)), read_cache(ListType::GetChildType(Type())),
read_vector(read_cache), overflow_child_count(0) {
child_defines.resize(reader.allocator, STANDARD_VECTOR_SIZE);
child_repeats.resize(reader.allocator, STANDARD_VECTOR_SIZE);
child_defines_ptr = (uint8_t *)child_defines.ptr;
child_repeats_ptr = (uint8_t *)child_repeats.ptr;
child_filter.set();
}
//===--------------------------------------------------------------------===//
// Struct Column Reader
//===--------------------------------------------------------------------===//
StructColumnReader::StructColumnReader(ParquetReader &reader, LogicalType type_p, const SchemaElement &schema_p,
idx_t schema_idx_p, idx_t max_define_p, idx_t max_repeat_p,
vector<unique_ptr<ColumnReader>> child_readers_p)
: ColumnReader(reader, move(type_p), schema_p, schema_idx_p, max_define_p, max_repeat_p),
child_readers(move(child_readers_p)) {
D_ASSERT(type.InternalType() == PhysicalType::STRUCT);
}
ColumnReader *StructColumnReader::GetChildReader(idx_t child_idx) {
return child_readers[child_idx].get();
}
void StructColumnReader::InitializeRead(const std::vector<ColumnChunk> &columns, TProtocol &protocol_p) {
for (auto &child : child_readers) {
child->InitializeRead(columns, protocol_p);
}
}
idx_t StructColumnReader::Read(uint64_t num_values, parquet_filter_t &filter, uint8_t *define_out, uint8_t *repeat_out,
Vector &result) {
auto &struct_entries = StructVector::GetEntries(result);
D_ASSERT(StructType::GetChildTypes(Type()).size() == struct_entries.size());
idx_t read_count = num_values;
for (idx_t i = 0; i < struct_entries.size(); i++) {
auto child_num_values = child_readers[i]->Read(num_values, filter, define_out, repeat_out, *struct_entries[i]);
if (i == 0) {
read_count = child_num_values;
} else if (read_count != child_num_values) {
throw std::runtime_error("Struct child row count mismatch");
}
}
// set the validity mask for this level
auto &validity = FlatVector::Validity(result);
for (idx_t i = 0; i < read_count; i++) {
if (define_out[i] < max_define) {
validity.SetInvalid(i);
}
}
return read_count;
}
void StructColumnReader::Skip(idx_t num_values) {
throw InternalException("Skip not implemented for StructColumnReader");
}
idx_t StructColumnReader::GroupRowsAvailable() {
for (idx_t i = 0; i < child_readers.size(); i++) {
if (child_readers[i]->Type().id() != LogicalTypeId::LIST) {
return child_readers[i]->GroupRowsAvailable();
}
}
return child_readers[0]->GroupRowsAvailable();
}
//===--------------------------------------------------------------------===//
// Decimal Column Reader
//===--------------------------------------------------------------------===//
template <class DUCKDB_PHYSICAL_TYPE, bool FIXED_LENGTH>
struct DecimalParquetValueConversion {
static DUCKDB_PHYSICAL_TYPE DictRead(ByteBuffer &dict, uint32_t &offset, ColumnReader &reader) {
auto dict_ptr = (DUCKDB_PHYSICAL_TYPE *)dict.ptr;
return dict_ptr[offset];
}
static DUCKDB_PHYSICAL_TYPE PlainRead(ByteBuffer &plain_data, ColumnReader &reader) {
idx_t byte_len;
if (FIXED_LENGTH) {
byte_len = (idx_t)reader.Schema().type_length; /* sure, type length needs to be a signed int */
} else {
byte_len = plain_data.read<uint32_t>();
}
plain_data.available(byte_len);
auto res =
ParquetDecimalUtils::ReadDecimalValue<DUCKDB_PHYSICAL_TYPE>((const_data_ptr_t)plain_data.ptr, byte_len);
plain_data.inc(byte_len);
return res;
}
static void PlainSkip(ByteBuffer &plain_data, ColumnReader &reader) {
uint32_t decimal_len = FIXED_LENGTH ? reader.Schema().type_length : plain_data.read<uint32_t>();
plain_data.inc(decimal_len);
}
};
template <class DUCKDB_PHYSICAL_TYPE, bool FIXED_LENGTH>
class DecimalColumnReader
: public TemplatedColumnReader<DUCKDB_PHYSICAL_TYPE,
DecimalParquetValueConversion<DUCKDB_PHYSICAL_TYPE, FIXED_LENGTH>> {
public:
DecimalColumnReader(ParquetReader &reader, LogicalType type_p, const SchemaElement &schema_p, // NOLINT
idx_t file_idx_p, idx_t max_define_p, idx_t max_repeat_p)
: TemplatedColumnReader<DUCKDB_PHYSICAL_TYPE,
DecimalParquetValueConversion<DUCKDB_PHYSICAL_TYPE, FIXED_LENGTH>>(
reader, move(type_p), schema_p, file_idx_p, max_define_p, max_repeat_p) {};
protected:
void Dictionary(shared_ptr<ByteBuffer> dictionary_data, idx_t num_entries) { // NOLINT
this->dict = make_shared<ResizeableBuffer>(this->reader.allocator, num_entries * sizeof(DUCKDB_PHYSICAL_TYPE));
auto dict_ptr = (DUCKDB_PHYSICAL_TYPE *)this->dict->ptr;
for (idx_t i = 0; i < num_entries; i++) {
dict_ptr[i] =
DecimalParquetValueConversion<DUCKDB_PHYSICAL_TYPE, FIXED_LENGTH>::PlainRead(*dictionary_data, *this);
}
}
};
template <bool FIXED_LENGTH>
static unique_ptr<ColumnReader> CreateDecimalReaderInternal(ParquetReader &reader, const LogicalType &type_p,
const SchemaElement &schema_p, idx_t file_idx_p,
idx_t max_define, idx_t max_repeat) {
switch (type_p.InternalType()) {
case PhysicalType::INT16:
return make_unique<DecimalColumnReader<int16_t, FIXED_LENGTH>>(reader, type_p, schema_p, file_idx_p, max_define,
max_repeat);
case PhysicalType::INT32:
return make_unique<DecimalColumnReader<int32_t, FIXED_LENGTH>>(reader, type_p, schema_p, file_idx_p, max_define,
max_repeat);
case PhysicalType::INT64:
return make_unique<DecimalColumnReader<int64_t, FIXED_LENGTH>>(reader, type_p, schema_p, file_idx_p, max_define,
max_repeat);
case PhysicalType::INT128:
return make_unique<DecimalColumnReader<hugeint_t, FIXED_LENGTH>>(reader, type_p, schema_p, file_idx_p,
max_define, max_repeat);
default:
throw InternalException("Unrecognized type for Decimal");
}
}
unique_ptr<ColumnReader> ParquetDecimalUtils::CreateReader(ParquetReader &reader, const LogicalType &type_p,
const SchemaElement &schema_p, idx_t file_idx_p,
idx_t max_define, idx_t max_repeat) {
if (schema_p.__isset.type_length) {
return CreateDecimalReaderInternal<true>(reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
} else {
return CreateDecimalReaderInternal<false>(reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
}
}
//===--------------------------------------------------------------------===//
// UUID Column Reader
//===--------------------------------------------------------------------===//
struct UUIDValueConversion {
static hugeint_t DictRead(ByteBuffer &dict, uint32_t &offset, ColumnReader &reader) {
auto dict_ptr = (hugeint_t *)dict.ptr;
return dict_ptr[offset];
}
static hugeint_t ReadParquetUUID(const_data_ptr_t input) {
hugeint_t result;
result.lower = 0;
uint64_t unsigned_upper = 0;
for (idx_t i = 0; i < sizeof(uint64_t); i++) {
unsigned_upper <<= 8;
unsigned_upper += input[i];
}
for (idx_t i = sizeof(uint64_t); i < sizeof(hugeint_t); i++) {
result.lower <<= 8;
result.lower += input[i];
}
result.upper = unsigned_upper;
result.upper ^= (int64_t(1) << 63);
return result;
}
static hugeint_t PlainRead(ByteBuffer &plain_data, ColumnReader &reader) {
idx_t byte_len = sizeof(hugeint_t);
plain_data.available(byte_len);
auto res = ReadParquetUUID((const_data_ptr_t)plain_data.ptr);
plain_data.inc(byte_len);
return res;
}
static void PlainSkip(ByteBuffer &plain_data, ColumnReader &reader) {
plain_data.inc(sizeof(hugeint_t));
}
};
class UUIDColumnReader : public TemplatedColumnReader<hugeint_t, UUIDValueConversion> {
public:
UUIDColumnReader(ParquetReader &reader, LogicalType type_p, const SchemaElement &schema_p, idx_t file_idx_p,
idx_t max_define_p, idx_t max_repeat_p)
: TemplatedColumnReader<hugeint_t, UUIDValueConversion>(reader, move(type_p), schema_p, file_idx_p,
max_define_p, max_repeat_p) {};
protected:
void Dictionary(shared_ptr<ByteBuffer> dictionary_data, idx_t num_entries) { // NOLINT
this->dict = make_shared<ResizeableBuffer>(this->reader.allocator, num_entries * sizeof(hugeint_t));
auto dict_ptr = (hugeint_t *)this->dict->ptr;
for (idx_t i = 0; i < num_entries; i++) {
dict_ptr[i] = UUIDValueConversion::PlainRead(*dictionary_data, *this);
}
}
};
//===--------------------------------------------------------------------===//
// Interval Column Reader
//===--------------------------------------------------------------------===//
struct IntervalValueConversion {
static constexpr const idx_t PARQUET_INTERVAL_SIZE = 12;
static interval_t DictRead(ByteBuffer &dict, uint32_t &offset, ColumnReader &reader) {
auto dict_ptr = (interval_t *)dict.ptr;
return dict_ptr[offset];
}
static interval_t ReadParquetInterval(const_data_ptr_t input) {
interval_t result;
result.months = Load<uint32_t>(input);
result.days = Load<uint32_t>(input + sizeof(uint32_t));
result.micros = int64_t(Load<uint32_t>(input + sizeof(uint32_t) * 2)) * 1000;
return result;
}
static interval_t PlainRead(ByteBuffer &plain_data, ColumnReader &reader) {
idx_t byte_len = PARQUET_INTERVAL_SIZE;
plain_data.available(byte_len);
auto res = ReadParquetInterval((const_data_ptr_t)plain_data.ptr);
plain_data.inc(byte_len);
return res;
}
static void PlainSkip(ByteBuffer &plain_data, ColumnReader &reader) {
plain_data.inc(PARQUET_INTERVAL_SIZE);
}
};
class IntervalColumnReader : public TemplatedColumnReader<interval_t, IntervalValueConversion> {
public:
IntervalColumnReader(ParquetReader &reader, LogicalType type_p, const SchemaElement &schema_p, idx_t file_idx_p,
idx_t max_define_p, idx_t max_repeat_p)
: TemplatedColumnReader<interval_t, IntervalValueConversion>(reader, move(type_p), schema_p, file_idx_p,
max_define_p, max_repeat_p) {};
protected:
void Dictionary(shared_ptr<ByteBuffer> dictionary_data, idx_t num_entries) override { // NOLINT
this->dict = make_shared<ResizeableBuffer>(this->reader.allocator, num_entries * sizeof(interval_t));
auto dict_ptr = (interval_t *)this->dict->ptr;
for (idx_t i = 0; i < num_entries; i++) {
dict_ptr[i] = IntervalValueConversion::PlainRead(*dictionary_data, *this);
}
}
};
//===--------------------------------------------------------------------===//
// Create Column Reader
//===--------------------------------------------------------------------===//
template <class T>
unique_ptr<ColumnReader> CreateDecimalReader(ParquetReader &reader, const LogicalType &type_p,
const SchemaElement &schema_p, idx_t file_idx_p, idx_t max_define,
idx_t max_repeat) {
switch (type_p.InternalType()) {
case PhysicalType::INT16:
return make_unique<TemplatedColumnReader<int16_t, TemplatedParquetValueConversion<T>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case PhysicalType::INT32:
return make_unique<TemplatedColumnReader<int32_t, TemplatedParquetValueConversion<T>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case PhysicalType::INT64:
return make_unique<TemplatedColumnReader<int64_t, TemplatedParquetValueConversion<T>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
default:
throw NotImplementedException("Unimplemented internal type for CreateDecimalReader");
}
}
unique_ptr<ColumnReader> ColumnReader::CreateReader(ParquetReader &reader, const LogicalType &type_p,
const SchemaElement &schema_p, idx_t file_idx_p, idx_t max_define,
idx_t max_repeat) {
switch (type_p.id()) {
case LogicalTypeId::BOOLEAN:
return make_unique<BooleanColumnReader>(reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::UTINYINT:
return make_unique<TemplatedColumnReader<uint8_t, TemplatedParquetValueConversion<uint32_t>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::USMALLINT:
return make_unique<TemplatedColumnReader<uint16_t, TemplatedParquetValueConversion<uint32_t>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::UINTEGER:
return make_unique<TemplatedColumnReader<uint32_t, TemplatedParquetValueConversion<uint32_t>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::UBIGINT:
return make_unique<TemplatedColumnReader<uint64_t, TemplatedParquetValueConversion<uint64_t>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::TINYINT:
return make_unique<TemplatedColumnReader<int8_t, TemplatedParquetValueConversion<int32_t>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::SMALLINT:
return make_unique<TemplatedColumnReader<int16_t, TemplatedParquetValueConversion<int32_t>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::INTEGER:
return make_unique<TemplatedColumnReader<int32_t, TemplatedParquetValueConversion<int32_t>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::BIGINT:
return make_unique<TemplatedColumnReader<int64_t, TemplatedParquetValueConversion<int64_t>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::FLOAT:
return make_unique<TemplatedColumnReader<float, TemplatedParquetValueConversion<float>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::DOUBLE:
return make_unique<TemplatedColumnReader<double, TemplatedParquetValueConversion<double>>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::TIMESTAMP:
switch (schema_p.type) {
case Type::INT96:
return make_unique<CallbackColumnReader<Int96, timestamp_t, ImpalaTimestampToTimestamp>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case Type::INT64:
switch (schema_p.converted_type) {
case ConvertedType::TIMESTAMP_MICROS:
return make_unique<CallbackColumnReader<int64_t, timestamp_t, ParquetTimestampMicrosToTimestamp>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case ConvertedType::TIMESTAMP_MILLIS:
return make_unique<CallbackColumnReader<int64_t, timestamp_t, ParquetTimestampMsToTimestamp>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
default:
break;
}
default:
break;
}
break;
case LogicalTypeId::DATE:
return make_unique<CallbackColumnReader<int32_t, date_t, ParquetIntToDate>>(reader, type_p, schema_p,
file_idx_p, max_define, max_repeat);
case LogicalTypeId::TIME:
return make_unique<CallbackColumnReader<int64_t, dtime_t, ParquetIntToTime>>(
reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::BLOB:
case LogicalTypeId::VARCHAR:
return make_unique<StringColumnReader>(reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::DECIMAL:
// we have to figure out what kind of int we need
switch (schema_p.type) {
case Type::INT32:
return CreateDecimalReader<int32_t>(reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case Type::INT64:
return CreateDecimalReader<int64_t>(reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case Type::BYTE_ARRAY:
case Type::FIXED_LEN_BYTE_ARRAY:
return ParquetDecimalUtils::CreateReader(reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
default:
throw NotImplementedException("Unrecognized Parquet type for Decimal");
}
break;
case LogicalTypeId::UUID:
return make_unique<UUIDColumnReader>(reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
case LogicalTypeId::INTERVAL:
return make_unique<IntervalColumnReader>(reader, type_p, schema_p, file_idx_p, max_define, max_repeat);
default:
break;
}
throw NotImplementedException(type_p.ToString());
}
} // namespace duckdb