-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvector_utilities.py
156 lines (120 loc) · 4.16 KB
/
vector_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
r"""
A set of vector calculations to aid in rotation calculations
"""
from __future__ import (division, print_function, absolute_import,
unicode_literals)
import numpy as np
__all__=['elementwise_dot', 'elementwise_norm', 'normalized_vectors',
'angles_between_list_of_vectors']
__author__ = ['Duncan Campbell', 'Andrew Hearin']
def normalized_vectors(vectors):
r"""
Return a unit-vector for each n-dimensional vector in the input list of n-dimensional points.
Parameters
----------
x : ndarray
Numpy array of shape (npts, ndim) storing a collection of n-dimensional points
Returns
-------
normed_x : ndarray
Numpy array of shape (npts, ndim)
Examples
--------
>>> npts = int(1e3)
>>> ndim = 3
>>> x = np.random.random((npts, ndim))
>>> normed_x = normalized_vectors(x)
"""
vectors = np.atleast_2d(vectors)
npts = vectors.shape[0]
with np.errstate(divide='ignore', invalid='ignore'):
return vectors/elementwise_norm(vectors).reshape((npts, -1))
def elementwise_norm(x):
r"""
Calculate the normalization of each element in a list of n-dimensional points.
Parameters
----------
x : ndarray
Numpy array of shape (npts, ndim) storing a collection of n-dimensional points
Returns
-------
result : ndarray
Numpy array of shape (npts, ) storing the norm of each n-dimensional point in x.
Examples
--------
>>> npts = int(1e3)
>>> ndim = 3
>>> x = np.random.random((npts, ndim))
>>> norms = elementwise_norm(x)
"""
x = np.atleast_2d(x)
return np.sqrt(np.sum(x**2, axis=1))
def elementwise_dot(x, y):
r"""
Calculate the dot product between
each pair of elements in two input lists of n-dimensional points.
Parameters
----------
x : ndarray
Numpy array of shape (npts, ndim) storing a collection of dimensional points
y : ndarray
Numpy array of shape (npts, ndim) storing a collection of dimensional points
Returns
-------
result : ndarray
Numpy array of shape (npts, ) storing the dot product between each
pair of corresponding points in x and y.
Examples
--------
>>> npts = int(1e3)
>>> ndim = 3
>>> x = np.random.random((npts, ndim))
>>> y = np.random.random((npts, ndim))
>>> dots = elementwise_dot(x, y)
"""
x = np.atleast_2d(x)
y = np.atleast_2d(y)
return np.sum(x*y, axis=1)
def angles_between_list_of_vectors(v0, v1, tol=1e-3, vn=None):
r""" Calculate the angle between a collection of n-dimensional vectors
Parameters
----------
v0 : ndarray
Numpy array of shape (npts, ndim) storing a collection of ndim-D vectors
Note that the normalization of `v0` will be ignored.
v1 : ndarray
Numpy array of shape (npts, ndim) storing a collection of ndim-D vectors
Note that the normalization of `v1` will be ignored.
tol : float, optional
Acceptable numerical error for errors in angle.
This variable is only used to round off numerical noise that otherwise
causes exceptions to be raised by the inverse cosine function.
Default is 0.001.
n1 : ndarray
normal vector
Returns
-------
angles : ndarray
Numpy array of shape (npts, ) storing the angles between each pair of
corresponding points in v0 and v1.
Returned values are in units of radians spanning [0, pi].
Examples
--------
>>> npts = int(1e4)
>>> ndim = 3
>>> v0 = np.random.random((npts, ndim))
>>> v1 = np.random.random((npts, ndim))
>>> angles = angles_between_list_of_vectors(v0, v1)
"""
dot = elementwise_dot(normalized_vectors(v0), normalized_vectors(v1))
if vn is None:
# Protect against tiny numerical excesses beyond the range [-1 ,1]
mask1 = (dot > 1) & (dot < 1 + tol)
dot = np.where(mask1, 1., dot)
mask2 = (dot < -1) & (dot > -1 - tol)
dot = np.where(mask2, -1., dot)
a = np.arccos(dot)
else:
cross = np.cross(v0,v1)
a = np.arctan2(elementwise_dot(cross, vn), dot)
return a