forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
110 lines (93 loc) · 4.27 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class Word2VecLayer(nn.Layer):
def __init__(self, sparse_feature_number, emb_dim, neg_num, emb_name,
emb_w_name, emb_b_name):
super(Word2VecLayer, self).__init__()
self.sparse_feature_number = sparse_feature_number
self.emb_dim = emb_dim
self.neg_num = neg_num
self.emb_name = emb_name
self.emb_w_name = emb_w_name
self.emb_b_name = emb_b_name
init_width = 0.5 / self.emb_dim
self.embedding = paddle.nn.Embedding(
self.sparse_feature_number,
self.emb_dim,
sparse=True,
weight_attr=paddle.ParamAttr(
name=self.emb_name,
initializer=paddle.nn.initializer.Uniform(-init_width,
init_width)))
self.embedding_w = paddle.nn.Embedding(
self.sparse_feature_number,
self.emb_dim,
sparse=True,
weight_attr=paddle.ParamAttr(
name=self.emb_w_name,
initializer=paddle.nn.initializer.Constant(value=0.0)))
self.embedding_b = paddle.nn.Embedding(
self.sparse_feature_number,
1,
sparse=True,
weight_attr=paddle.ParamAttr(
name=self.emb_b_name,
initializer=paddle.nn.initializer.Constant(value=0.0)))
def forward(self, inputs):
input_emb = self.embedding(inputs[0])
true_emb_w = self.embedding_w(inputs[1])
true_emb_b = self.embedding_b(inputs[1])
input_emb = paddle.squeeze(x=input_emb, axis=[1])
true_emb_w = paddle.squeeze(x=true_emb_w, axis=[1])
true_emb_b = paddle.squeeze(x=true_emb_b, axis=[1])
neg_emb_w = self.embedding_w(inputs[2])
neg_emb_b = self.embedding_b(inputs[2])
neg_emb_b_vec = paddle.reshape(neg_emb_b, shape=[-1, self.neg_num])
true_logits = paddle.add(x=paddle.sum(x=paddle.multiply(
x=input_emb, y=true_emb_w),
axis=1,
keepdim=True),
y=true_emb_b)
input_emb_re = paddle.reshape(input_emb, shape=[-1, 1, self.emb_dim])
neg_matmul = paddle.matmul(input_emb_re, neg_emb_w, transpose_y=True)
neg_matmul_re = paddle.reshape(neg_matmul, shape=[-1, self.neg_num])
neg_logits = paddle.add(x=neg_matmul_re, y=neg_emb_b_vec)
return true_logits, neg_logits
class Word2VecInferLayer(nn.Layer):
def __init__(self, sparse_feature_number, emb_dim, emb_name):
super(Word2VecInferLayer, self).__init__()
self.sparse_feature_number = sparse_feature_number
self.emb_dim = emb_dim
self.emb_name = emb_name
init_width = 0.5 / self.emb_dim
self.embedding = paddle.nn.Embedding(
self.sparse_feature_number,
self.emb_dim,
weight_attr=paddle.ParamAttr(
name=self.emb_name,
initializer=paddle.nn.initializer.Uniform(-init_width,
init_width)))
def forward(self, analogy_a, analogy_b, analogy_c, all_label):
emb_a = self.embedding(analogy_a)
emb_b = self.embedding(analogy_b)
emb_c = self.embedding(analogy_c)
emb_all_label = self.embedding(all_label)
target = emb_b - emb_a + emb_c
emb_all_label_l2 = F.normalize(emb_all_label, axis=1)
dist = paddle.matmul(x=target, y=emb_all_label_l2, transpose_y=True)
values, pred_idx = paddle.topk(x=dist, k=4)
return values, pred_idx