-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathlp_extract.rs
260 lines (229 loc) · 8.45 KB
/
lp_extract.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
use coin_cbc::{Col, Model, Sense};
use crate::*;
/// A cost function to be used by an [`LpExtractor`].
pub trait LpCostFunction<L: Language, N: Analysis<L>> {
/// Returns the cost of the given e-node.
///
/// This function may look at other parts of the e-graph to compute the cost
/// of the given e-node.
fn node_cost(&mut self, egraph: &EGraph<L, N>, eclass: Id, enode: &L) -> f64;
}
impl<L: Language, N: Analysis<L>> LpCostFunction<L, N> for AstSize {
fn node_cost(&mut self, _egraph: &EGraph<L, N>, _eclass: Id, _enode: &L) -> f64 {
1.0
}
}
/// A structure to perform extraction using integer linear programming.
/// This uses the [`cbc`](https://projects.coin-or.org/Cbc) solver.
/// You must have it installed on your machine to use this feature.
/// You can install it using:
///
/// | OS | Command |
/// |------------------|------------------------------------------|
/// | Fedora / Red Hat | `sudo dnf install coin-or-Cbc-devel` |
/// | Ubuntu / Debian | `sudo apt-get install coinor-libcbc-dev` |
/// | macOS | `brew install cbc` |
///
/// # Example
/// ```
/// use egg::*;
/// let mut egraph = EGraph::<SymbolLang, ()>::default();
///
/// let f = egraph.add_expr(&"(f x x x)".parse().unwrap());
/// let g = egraph.add_expr(&"(g (g x))".parse().unwrap());
/// egraph.union(f, g);
/// egraph.rebuild();
///
/// let best = Extractor::new(&egraph, AstSize).find_best(f).1;
/// let lp_best = LpExtractor::new(&egraph, AstSize).solve(f);
///
/// // In regular extraction, cost is measures on the tree.
/// assert_eq!(best.to_string(), "(g (g x))");
///
/// // Using ILP only counts common sub-expressions once,
/// // so it can lead to a smaller DAG expression.
/// assert_eq!(lp_best.to_string(), "(f x x x)");
/// assert_eq!(lp_best.as_ref().len(), 2);
/// ```
pub struct LpExtractor<'a, L: Language, N: Analysis<L>> {
egraph: &'a EGraph<L, N>,
model: Model,
vars: HashMap<Id, ClassVars>,
}
struct ClassVars {
active: Col,
order: Col,
nodes: Vec<Col>,
}
impl<'a, L, N> LpExtractor<'a, L, N>
where
L: Language,
N: Analysis<L>,
{
/// Create an [`LpExtractor`] using costs from the given [`LpCostFunction`].
/// See those docs for details.
pub fn new<CF>(egraph: &'a EGraph<L, N>, mut cost_function: CF) -> Self
where
CF: LpCostFunction<L, N>,
{
let max_order = egraph.total_number_of_nodes() as f64 * 10.0;
let mut model = Model::default();
let vars: HashMap<Id, ClassVars> = egraph
.classes()
.map(|class| {
let cvars = ClassVars {
active: model.add_binary(),
order: model.add_col(),
nodes: class.nodes.iter().map(|_| model.add_binary()).collect(),
};
model.set_col_upper(cvars.order, max_order);
(class.id, cvars)
})
.collect();
let mut cycles: HashSet<(Id, usize)> = Default::default();
find_cycles(egraph, |id, i| {
cycles.insert((id, i));
});
for (&id, class) in &vars {
// class active == some node active
// sum(for node_active in class) == class_active
let row = model.add_row();
model.set_row_equal(row, 0.0);
model.set_weight(row, class.active, -1.0);
for &node_active in &class.nodes {
model.set_weight(row, node_active, 1.0);
}
for (i, (node, &node_active)) in egraph[id].iter().zip(&class.nodes).enumerate() {
if cycles.contains(&(id, i)) {
model.set_col_upper(node_active, 0.0);
model.set_col_lower(node_active, 0.0);
continue;
}
for child in node.children() {
let child_active = vars[child].active;
// node active implies child active, encoded as:
// node_active <= child_active
// node_active - child_active <= 0
let row = model.add_row();
model.set_row_upper(row, 0.0);
model.set_weight(row, node_active, 1.0);
model.set_weight(row, child_active, -1.0);
}
}
}
model.set_obj_sense(Sense::Minimize);
for class in egraph.classes() {
for (node, &node_active) in class.iter().zip(&vars[&class.id].nodes) {
model.set_obj_coeff(node_active, cost_function.node_cost(egraph, class.id, node));
}
}
dbg!(max_order);
Self {
egraph,
model,
vars,
}
}
/// Set the cbc timeout in seconds.
pub fn timeout(&mut self, seconds: f64) -> &mut Self {
self.model.set_parameter("seconds", &seconds.to_string());
self
}
/// Extract a single rooted term.
///
/// This is just a shortcut for [`LpExtractor::solve_multiple_using`].
pub fn solve(&mut self, root: Id) -> RecExpr<L> {
self.solve_multiple(&[root]).0
}
/// Extract (potentially multiple) roots
pub fn solve_multiple(&mut self, roots: &[Id]) -> (RecExpr<L>, Vec<Id>) {
let egraph = self.egraph;
for class in self.vars.values() {
self.model.set_binary(class.active);
}
for root in roots {
let root = &egraph.find(*root);
self.model.set_col_lower(self.vars[root].active, 1.0);
}
let solution = self.model.solve();
log::info!(
"CBC status {:?}, {:?}",
solution.raw().status(),
solution.raw().secondary_status()
);
let mut todo: Vec<Id> = roots.iter().copied().collect();
let mut expr = RecExpr::default();
// converts e-class ids to e-node ids
let mut ids: HashMap<Id, Id> = HashMap::default();
while let Some(&id) = todo.last() {
if ids.contains_key(&id) {
todo.pop();
continue;
}
let v = &self.vars[&id];
assert!(solution.col(v.active) > 0.0);
let node_idx = v.nodes.iter().position(|&n| solution.col(n) > 0.0).unwrap();
let node = &self.egraph[id].nodes[node_idx];
if node.all(|child| ids.contains_key(&child)) {
let new_id = expr.add(node.clone().map_children(|i| ids[&i]));
ids.insert(id, new_id);
todo.pop();
} else {
todo.extend_from_slice(node.children())
}
}
let root_idxs = roots.iter().map(|root| ids[&egraph.find(*root)]).collect();
assert!(expr.is_dag(), "LpExtract found a cyclic term!: {:?}", expr);
(expr, root_idxs)
}
}
fn find_cycles<L, N>(egraph: &EGraph<L, N>, mut f: impl FnMut(Id, usize))
where
L: Language,
N: Analysis<L>,
{
enum Color {
White,
Gray,
Black,
}
type Enter = bool;
let mut color: HashMap<Id, Color> = egraph.classes().map(|c| (c.id, Color::White)).collect();
let mut stack: Vec<(Enter, Id)> = egraph.classes().map(|c| (true, c.id)).collect();
while let Some((enter, id)) = stack.pop() {
if enter {
*color.get_mut(&id).unwrap() = Color::Gray;
stack.push((false, id));
for (i, node) in egraph[id].iter().enumerate() {
for child in node.children() {
match &color[child] {
Color::White => stack.push((true, *child)),
Color::Gray => f(id, i),
Color::Black => (),
}
}
}
} else {
*color.get_mut(&id).unwrap() = Color::Black;
}
}
}
#[cfg(test)]
mod tests {
use crate::{SymbolLang as S, *};
#[test]
fn simple_lp_extract_two() {
let mut egraph = EGraph::<S, ()>::default();
let a = egraph.add(S::leaf("a"));
let plus = egraph.add(S::new("+", vec![a, a]));
let f = egraph.add(S::new("f", vec![plus]));
let g = egraph.add(S::new("g", vec![plus]));
let mut ext = LpExtractor::new(&egraph, AstSize);
ext.timeout(10.0); // way too much time
let (exp, ids) = ext.solve_multiple(&[f, g]);
println!("{:?}", exp);
println!("{}", exp);
assert_eq!(exp.as_ref().len(), 4);
assert_eq!(ids.len(), 2);
}
}