-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathegraph.rs
1553 lines (1399 loc) · 54.5 KB
/
egraph.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use crate::*;
use std::{
borrow::BorrowMut,
fmt::{self, Debug, Display},
marker::PhantomData,
};
#[cfg(feature = "serde-1")]
use serde::{Deserialize, Serialize};
use log::*;
/** A data structure to keep track of equalities between expressions.
Check out the [background tutorial](crate::tutorials::_01_background)
for more information on e-graphs in general.
# E-graphs in `egg`
In `egg`, the main types associated with e-graphs are
[`EGraph`], [`EClass`], [`Language`], and [`Id`].
[`EGraph`] and [`EClass`] are all generic over a
[`Language`], meaning that types actually floating around in the
egraph are all user-defined.
In particular, the e-nodes are elements of your [`Language`].
[`EGraph`]s and [`EClass`]es are additionally parameterized by some
[`Analysis`], abritrary data associated with each e-class.
Many methods of [`EGraph`] deal with [`Id`]s, which represent e-classes.
Because eclasses are frequently merged, many [`Id`]s will refer to the
same e-class.
You can use the `egraph[id]` syntax to get an [`EClass`] from an [`Id`], because
[`EGraph`] implements
`Index` and `IndexMut`.
Enabling the `serde-1` feature on this crate will allow you to
de/serialize [`EGraph`]s using [`serde`](https://serde.rs/).
You must call [`EGraph::rebuild`] after deserializing an e-graph!
[`add`]: EGraph::add()
[`union`]: EGraph::union()
[`rebuild`]: EGraph::rebuild()
[equivalence relation]: https://en.wikipedia.org/wiki/Equivalence_relation
[congruence relation]: https://en.wikipedia.org/wiki/Congruence_relation
[dot]: Dot
[extract]: Extractor
[sound]: https://itinerarium.github.io/phoneme-synthesis/?w=/'igraf/
**/
#[derive(Clone)]
#[cfg_attr(feature = "serde-1", derive(Serialize, Deserialize))]
pub struct EGraph<L: Language, N: Analysis<L>> {
/// The `Analysis` given when creating this `EGraph`.
pub analysis: N,
/// The `Explain` used to explain equivalences in this `EGraph`.
pub(crate) explain: Option<Explain<L>>,
unionfind: UnionFind,
/// Stores the original node represented by each non-canonical id
nodes: Vec<L>,
/// Stores each enode's `Id`, not the `Id` of the eclass.
/// Enodes in the memo are canonicalized at each rebuild, but after rebuilding new
/// unions can cause them to become out of date.
#[cfg_attr(feature = "serde-1", serde(with = "vectorize"))]
memo: HashMap<L, Id>,
/// Nodes which need to be processed for rebuilding. The `Id` is the `Id` of the enode,
/// not the canonical id of the eclass.
pending: Vec<Id>,
analysis_pending: UniqueQueue<Id>,
#[cfg_attr(
feature = "serde-1",
serde(bound(
serialize = "N::Data: Serialize",
deserialize = "N::Data: for<'a> Deserialize<'a>",
))
)]
pub(crate) classes: HashMap<Id, EClass<L, N::Data>>,
#[cfg_attr(feature = "serde-1", serde(skip))]
#[cfg_attr(feature = "serde-1", serde(default = "default_classes_by_op"))]
pub(crate) classes_by_op: HashMap<L::Discriminant, HashSet<Id>>,
/// Whether or not reading operation are allowed on this e-graph.
/// Mutating operations will set this to `false`, and
/// [`EGraph::rebuild`] will set it to true.
/// Reading operations require this to be `true`.
/// Only manually set it if you know what you're doing.
#[cfg_attr(feature = "serde-1", serde(skip))]
pub clean: bool,
}
#[cfg(feature = "serde-1")]
fn default_classes_by_op<K>() -> HashMap<K, HashSet<Id>> {
HashMap::default()
}
impl<L: Language, N: Analysis<L> + Default> Default for EGraph<L, N> {
fn default() -> Self {
Self::new(N::default())
}
}
// manual debug impl to avoid L: Language bound on EGraph defn
impl<L: Language, N: Analysis<L>> Debug for EGraph<L, N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("EGraph")
.field("memo", &self.memo)
.field("classes", &self.classes)
.finish()
}
}
impl<L: Language, N: Analysis<L>> EGraph<L, N> {
/// Creates a new, empty `EGraph` with the given `Analysis`
pub fn new(analysis: N) -> Self {
Self {
analysis,
classes: Default::default(),
unionfind: Default::default(),
nodes: Default::default(),
clean: false,
explain: None,
pending: Default::default(),
memo: Default::default(),
analysis_pending: Default::default(),
classes_by_op: Default::default(),
}
}
/// Returns an iterator over the eclasses in the egraph.
pub fn classes(&self) -> impl ExactSizeIterator<Item = &EClass<L, N::Data>> {
self.classes.values()
}
/// Returns an mutating iterator over the eclasses in the egraph.
pub fn classes_mut(&mut self) -> impl ExactSizeIterator<Item = &mut EClass<L, N::Data>> {
self.classes.values_mut()
}
/// Returns `true` if the egraph is empty
/// # Example
/// ```
/// use egg::{*, SymbolLang as S};
/// let mut egraph = EGraph::<S, ()>::default();
/// assert!(egraph.is_empty());
/// egraph.add(S::leaf("foo"));
/// assert!(!egraph.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.memo.is_empty()
}
/// Returns the number of enodes in the `EGraph`.
///
/// Actually returns the size of the hashcons index.
/// # Example
/// ```
/// use egg::{*, SymbolLang as S};
/// let mut egraph = EGraph::<S, ()>::default();
/// let x = egraph.add(S::leaf("x"));
/// let y = egraph.add(S::leaf("y"));
/// // only one eclass
/// egraph.union(x, y);
/// egraph.rebuild();
///
/// assert_eq!(egraph.total_size(), 2);
/// assert_eq!(egraph.number_of_classes(), 1);
/// ```
pub fn total_size(&self) -> usize {
self.memo.len()
}
/// Iterates over the classes, returning the total number of nodes.
pub fn total_number_of_nodes(&self) -> usize {
self.classes().map(|c| c.len()).sum()
}
/// Returns the number of eclasses in the egraph.
pub fn number_of_classes(&self) -> usize {
self.classes.len()
}
/// Enable explanations for this `EGraph`.
/// This allows the egraph to explain why two expressions are
/// equivalent with the [`explain_equivalence`](EGraph::explain_equivalence) function.
pub fn with_explanations_enabled(mut self) -> Self {
if self.explain.is_some() {
return self;
}
if self.total_size() > 0 {
panic!("Need to set explanations enabled before adding any expressions to the egraph.");
}
self.explain = Some(Explain::new());
self
}
/// By default, egg runs a greedy algorithm to reduce the size of resulting explanations (without complexity overhead).
/// Use this function to turn this algorithm off.
pub fn without_explanation_length_optimization(mut self) -> Self {
if let Some(explain) = &mut self.explain {
explain.optimize_explanation_lengths = false;
self
} else {
panic!("Need to set explanations enabled before setting length optimization.");
}
}
/// By default, egg runs a greedy algorithm to reduce the size of resulting explanations (without complexity overhead).
/// Use this function to turn this algorithm on again if you have turned it off.
pub fn with_explanation_length_optimization(mut self) -> Self {
if let Some(explain) = &mut self.explain {
explain.optimize_explanation_lengths = true;
self
} else {
panic!("Need to set explanations enabled before setting length optimization.");
}
}
/// Make a copy of the egraph with the same nodes, but no unions between them.
pub fn copy_without_unions(&self, analysis: N) -> Self {
if self.explain.is_none() {
panic!("Use runner.with_explanations_enabled() or egraph.with_explanations_enabled() before running to get a copied egraph without unions");
}
let mut egraph = Self::new(analysis);
for node in &self.nodes {
egraph.add(node.clone());
}
egraph
}
/// Performs the union between two egraphs.
pub fn egraph_union(&mut self, other: &EGraph<L, N>) {
let right_unions = other.get_union_equalities();
for (left, right, why) in right_unions {
self.union_instantiations(
&other.id_to_pattern(left, &Default::default()).0.ast,
&other.id_to_pattern(right, &Default::default()).0.ast,
&Default::default(),
why,
);
}
self.rebuild();
}
fn from_enodes(enodes: Vec<(L, Id)>, analysis: N) -> Self {
let mut egraph = Self::new(analysis);
let mut ids: HashMap<Id, Id> = Default::default();
loop {
let mut did_something = false;
for (enode, id) in &enodes {
let valid = enode.children().iter().all(|c| ids.contains_key(c));
if !valid {
continue;
}
let mut enode = enode.clone().map_children(|c| ids[&c]);
if egraph.lookup(&mut enode).is_some() {
continue;
}
let added = egraph.add(enode);
if let Some(existing) = ids.get(id) {
egraph.union(*existing, added);
} else {
ids.insert(*id, added);
}
did_something = true;
}
if !did_something {
break;
}
}
egraph
}
/// A intersection algorithm between two egraphs.
/// The intersection is correct for all terms that are equal in both egraphs.
/// Be wary, though, because terms which are not represented in both egraphs
/// are not captured in the intersection.
/// The runtime of this algorithm is O(|E1| * |E2|), where |E1| and |E2| are the number of enodes in each egraph.
pub fn egraph_intersect(&self, other: &EGraph<L, N>, analysis: N) -> EGraph<L, N> {
let mut product_map: HashMap<(Id, Id), Id> = Default::default();
let mut enodes = vec![];
for class1 in self.classes() {
for class2 in other.classes() {
self.intersect_classes(other, &mut enodes, class1.id, class2.id, &mut product_map);
}
}
Self::from_enodes(enodes, analysis)
}
fn get_product_id(class1: Id, class2: Id, product_map: &mut HashMap<(Id, Id), Id>) -> Id {
if let Some(id) = product_map.get(&(class1, class2)) {
*id
} else {
let id = Id::from(product_map.len());
product_map.insert((class1, class2), id);
id
}
}
fn intersect_classes(
&self,
other: &EGraph<L, N>,
res: &mut Vec<(L, Id)>,
class1: Id,
class2: Id,
product_map: &mut HashMap<(Id, Id), Id>,
) {
let res_id = Self::get_product_id(class1, class2, product_map);
for node1 in &self.classes[&class1].nodes {
for node2 in &other.classes[&class2].nodes {
if node1.matches(node2) {
let children1 = node1.children();
let children2 = node2.children();
let mut new_node = node1.clone();
let children = new_node.children_mut();
for (i, (child1, child2)) in children1.iter().zip(children2.iter()).enumerate()
{
let prod = Self::get_product_id(
self.find(*child1),
other.find(*child2),
product_map,
);
children[i] = prod;
}
res.push((new_node, res_id));
}
}
}
}
/// Pick a representative term for a given Id.
///
/// Calling this function on an uncanonical `Id` returns a representative based on the how it
/// was obtained (see [`add_uncanoncial`](EGraph::add_uncanonical),
/// [`add_expr_uncanonical`](EGraph::add_expr_uncanonical))
pub fn id_to_expr(&self, id: Id) -> RecExpr<L> {
let mut res = Default::default();
let mut cache = Default::default();
self.id_to_expr_internal(&mut res, id, &mut cache);
res
}
fn id_to_expr_internal(
&self,
res: &mut RecExpr<L>,
node_id: Id,
cache: &mut HashMap<Id, Id>,
) -> Id {
if let Some(existing) = cache.get(&node_id) {
return *existing;
}
let new_node = self
.id_to_node(node_id)
.clone()
.map_children(|child| self.id_to_expr_internal(res, child, cache));
let res_id = res.add(new_node);
cache.insert(node_id, res_id);
res_id
}
/// Like [`id_to_expr`](EGraph::id_to_expr) but only goes one layer deep
pub fn id_to_node(&self, id: Id) -> &L {
&self.nodes[usize::from(id)]
}
/// Like [`id_to_expr`](EGraph::id_to_expr), but creates a pattern instead of a term.
/// When an eclass listed in the given substitutions is found, it creates a variable.
/// It also adds this variable and the corresponding Id value to the resulting [`Subst`]
/// Otherwise it behaves like [`id_to_expr`](EGraph::id_to_expr).
pub fn id_to_pattern(&self, id: Id, substitutions: &HashMap<Id, Id>) -> (Pattern<L>, Subst) {
let mut res = Default::default();
let mut subst = Default::default();
let mut cache = Default::default();
self.id_to_pattern_internal(&mut res, id, substitutions, &mut subst, &mut cache);
(Pattern::new(res), subst)
}
fn id_to_pattern_internal(
&self,
res: &mut PatternAst<L>,
node_id: Id,
var_substitutions: &HashMap<Id, Id>,
subst: &mut Subst,
cache: &mut HashMap<Id, Id>,
) -> Id {
if let Some(existing) = cache.get(&node_id) {
return *existing;
}
let res_id = if let Some(existing) = var_substitutions.get(&node_id) {
let var = format!("?{}", node_id).parse().unwrap();
subst.insert(var, *existing);
res.add(ENodeOrVar::Var(var))
} else {
let new_node = self.id_to_node(node_id).clone().map_children(|child| {
self.id_to_pattern_internal(res, child, var_substitutions, subst, cache)
});
res.add(ENodeOrVar::ENode(new_node))
};
cache.insert(node_id, res_id);
res_id
}
/// Get all the unions ever found in the egraph in terms of enode ids.
pub fn get_union_equalities(&self) -> UnionEqualities {
if let Some(explain) = &self.explain {
explain.get_union_equalities()
} else {
panic!("Use runner.with_explanations_enabled() or egraph.with_explanations_enabled() before running to get union equalities");
}
}
/// Disable explanations for this `EGraph`.
pub fn with_explanations_disabled(mut self) -> Self {
self.explain = None;
self
}
/// Check if explanations are enabled.
pub fn are_explanations_enabled(&self) -> bool {
self.explain.is_some()
}
/// Get the number of congruences between nodes in the egraph.
/// Only available when explanations are enabled.
pub fn get_num_congr(&mut self) -> usize {
if let Some(explain) = &mut self.explain {
explain
.with_nodes(&self.nodes)
.get_num_congr::<N>(&self.classes, &self.unionfind)
} else {
panic!("Use runner.with_explanations_enabled() or egraph.with_explanations_enabled() before running to get explanations.")
}
}
/// Get the number of nodes in the egraph used for explanations.
pub fn get_explanation_num_nodes(&mut self) -> usize {
if let Some(explain) = &mut self.explain {
explain.with_nodes(&self.nodes).get_num_nodes()
} else {
panic!("Use runner.with_explanations_enabled() or egraph.with_explanations_enabled() before running to get explanations.")
}
}
/// When explanations are enabled, this function
/// produces an [`Explanation`] describing why two expressions are equivalent.
///
/// The [`Explanation`] can be used in it's default tree form or in a less compact
/// flattened form. Each of these also has a s-expression string representation,
/// given by [`get_flat_string`](Explanation::get_flat_string) and [`get_string`](Explanation::get_string).
pub fn explain_equivalence(
&mut self,
left_expr: &RecExpr<L>,
right_expr: &RecExpr<L>,
) -> Explanation<L> {
let left = self.add_expr_uncanonical(left_expr);
let right = self.add_expr_uncanonical(right_expr);
self.explain_id_equivalence(left, right)
}
/// Equivalent to calling [`explain_equivalence`](EGraph::explain_equivalence)`(`[`id_to_expr`](EGraph::id_to_expr)`(left),`
/// [`id_to_expr`](EGraph::id_to_expr)`(right))` but more efficient
///
/// This function picks representatives using [`id_to_expr`](EGraph::id_to_expr) so choosing
/// `Id`s returned by functions like [`add_uncanonical`](EGraph::add_uncanonical) is important
/// to control explanations
pub fn explain_id_equivalence(&mut self, left: Id, right: Id) -> Explanation<L> {
if self.find(left) != self.find(right) {
panic!(
"Tried to explain equivalence between non-equal terms {:?} and {:?}",
self.id_to_expr(left),
self.id_to_expr(left)
);
}
if let Some(explain) = &mut self.explain {
explain.with_nodes(&self.nodes).explain_equivalence::<N>(
left,
right,
&mut self.unionfind,
&self.classes,
)
} else {
panic!("Use runner.with_explanations_enabled() or egraph.with_explanations_enabled() before running to get explanations.")
}
}
/// When explanations are enabled, this function
/// produces an [`Explanation`] describing how the given expression came
/// to be in the egraph.
///
/// The [`Explanation`] begins with some expression that was added directly
/// into the egraph and ends with the given `expr`.
/// Note that this function can be called again to explain any intermediate terms
/// used in the output [`Explanation`].
pub fn explain_existance(&mut self, expr: &RecExpr<L>) -> Explanation<L> {
let id = self.add_expr_uncanonical(expr);
self.explain_existance_id(id)
}
/// Equivalent to calling [`explain_existance`](EGraph::explain_existance)`(`[`id_to_expr`](EGraph::id_to_expr)`(id))`
/// but more efficient
fn explain_existance_id(&mut self, id: Id) -> Explanation<L> {
if let Some(explain) = &mut self.explain {
explain.with_nodes(&self.nodes).explain_existance(id)
} else {
panic!("Use runner.with_explanations_enabled() or egraph.with_explanations_enabled() before running to get explanations.")
}
}
/// Return an [`Explanation`] for why a pattern appears in the egraph.
pub fn explain_existance_pattern(
&mut self,
pattern: &PatternAst<L>,
subst: &Subst,
) -> Explanation<L> {
let id = self.add_instantiation_noncanonical(pattern, subst);
if let Some(explain) = &mut self.explain {
explain.with_nodes(&self.nodes).explain_existance(id)
} else {
panic!("Use runner.with_explanations_enabled() or egraph.with_explanations_enabled() before running to get explanations.")
}
}
/// Get an explanation for why an expression matches a pattern.
pub fn explain_matches(
&mut self,
left_expr: &RecExpr<L>,
right_pattern: &PatternAst<L>,
subst: &Subst,
) -> Explanation<L> {
let left = self.add_expr_uncanonical(left_expr);
let right = self.add_instantiation_noncanonical(right_pattern, subst);
if self.find(left) != self.find(right) {
panic!(
"Tried to explain equivalence between non-equal terms {:?} and {:?}",
left_expr, right_pattern
);
}
if let Some(explain) = &mut self.explain {
explain.with_nodes(&self.nodes).explain_equivalence::<N>(
left,
right,
&mut self.unionfind,
&self.classes,
)
} else {
panic!("Use runner.with_explanations_enabled() or egraph.with_explanations_enabled() before running to get explanations.");
}
}
/// Canonicalizes an eclass id.
///
/// This corresponds to the `find` operation on the egraph's
/// underlying unionfind data structure.
///
/// # Example
/// ```
/// use egg::{*, SymbolLang as S};
/// let mut egraph = EGraph::<S, ()>::default();
/// let x = egraph.add(S::leaf("x"));
/// let y = egraph.add(S::leaf("y"));
/// assert_ne!(egraph.find(x), egraph.find(y));
///
/// egraph.union(x, y);
/// egraph.rebuild();
/// assert_eq!(egraph.find(x), egraph.find(y));
/// ```
pub fn find(&self, id: Id) -> Id {
self.unionfind.find(id)
}
/// This is private, but internals should use this whenever
/// possible because it does path compression.
fn find_mut(&mut self, id: Id) -> Id {
self.unionfind.find_mut(id)
}
/// Creates a [`Dot`] to visualize this egraph. See [`Dot`].
pub fn dot(&self) -> Dot<L, N> {
Dot {
egraph: self,
config: vec![],
use_anchors: true,
}
}
}
/// Translates `EGraph<L, A>` into `EGraph<L2, A2>`. For common cases, you don't
/// need to implement this manually. See the provided [`SimpleLanguageMapper`].
pub trait LanguageMapper<L, A>
where
L: Language,
A: Analysis<L>,
{
/// The target language to translate into.
type L2: Language;
/// The target analysis to transate into.
type A2: Analysis<Self::L2>;
/// Translate a node of `L` into a node of `L2`.
fn map_node(&self, node: L) -> Self::L2;
/// Translate `L::Discriminant` into `L2::Discriminant`
fn map_discriminant(
&self,
discriminant: L::Discriminant,
) -> <Self::L2 as Language>::Discriminant;
/// Translate an analysis of type `A` into an analysis of `A2`.
fn map_analysis(&self, analysis: A) -> Self::A2;
/// Translate `A::Data` into `A2::Data`.
fn map_data(&self, data: A::Data) -> <Self::A2 as Analysis<Self::L2>>::Data;
/// Translate an [`EClass`] over `L` into an [`EClass`] over `L2`.
fn map_eclass(
&self,
src_eclass: EClass<L, A::Data>,
) -> EClass<Self::L2, <Self::A2 as Analysis<Self::L2>>::Data> {
EClass {
id: src_eclass.id,
nodes: src_eclass
.nodes
.into_iter()
.map(|l| self.map_node(l))
.collect(),
data: self.map_data(src_eclass.data),
parents: src_eclass.parents,
}
}
/// Map an `EGraph` over `L` into an `EGraph` over `L2`.
fn map_egraph(&self, src_egraph: EGraph<L, A>) -> EGraph<Self::L2, Self::A2> {
let kv_map = |(k, v): (L, Id)| (self.map_node(k), v);
EGraph {
analysis: self.map_analysis(src_egraph.analysis),
explain: None,
unionfind: src_egraph.unionfind,
memo: src_egraph.memo.into_iter().map(kv_map).collect(),
pending: src_egraph.pending,
nodes: src_egraph
.nodes
.into_iter()
.map(|x| self.map_node(x))
.collect(),
analysis_pending: src_egraph.analysis_pending,
classes: src_egraph
.classes
.into_iter()
.map(|(id, eclass)| (id, self.map_eclass(eclass)))
.collect(),
classes_by_op: src_egraph
.classes_by_op
.into_iter()
.map(|(k, v)| (self.map_discriminant(k), v))
.collect(),
clean: src_egraph.clean,
}
}
}
/// An implementation of [`LanguageMapper`] that can convert an [`EGraph`] over one
/// language into an [`EGraph`] over a different language in common cases.
///
/// Specifically, you can use this if have
/// [`conversion`](https://doc.rust-lang.org/1.76.0/core/convert/index.html)
/// implemented between your source and target language, as well as your source and
/// target analysis.
///
/// Here is an example of how to use this. Consider a case where you have a newtype
/// wrapper over an existing language type:
///
/// ```rust
/// use egg::*;
///
/// #[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
/// struct MyLang(SymbolLang);
/// # impl Language for MyLang {
/// # type Discriminant = <SymbolLang as Language>::Discriminant;
/// #
/// # fn matches(&self, other: &Self) -> bool {
/// # self.0.matches(&other.0)
/// # }
/// #
/// # fn children(&self) -> &[Id] {
/// # self.0.children()
/// # }
/// #
/// # fn children_mut(&mut self) -> &mut [Id] {
/// # self.0.children_mut()
/// # }
/// #
/// # fn discriminant(&self) -> Self::Discriminant {
/// # self.0.discriminant()
/// # }
/// # }
///
/// // some external library function
/// pub fn external(egraph: EGraph<SymbolLang, ()>) { }
///
/// fn do_thing(egraph: EGraph<MyLang, ()>) {
/// // how do I call external?
/// external(todo!())
/// }
/// ```
///
/// By providing an implementation of `From<MyLang> for SymbolLang`, we can
/// construct `SimpleLanguageMapper` and use it to translate our [`EGraph`] into the
/// right type.
///
/// ```rust
/// # use egg::*;
/// # #[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
/// # struct MyLang(SymbolLang);
/// # impl Language for MyLang {
/// # type Discriminant = <SymbolLang as Language>::Discriminant;
/// #
/// # fn matches(&self, other: &Self) -> bool {
/// # self.0.matches(&other.0)
/// # }
/// #
/// # fn children(&self) -> &[Id] {
/// # self.0.children()
/// # }
/// #
/// # fn children_mut(&mut self) -> &mut [Id] {
/// # self.0.children_mut()
/// # }
/// #
/// # fn discriminant(&self) -> Self::Discriminant {
/// # self.0.discriminant()
/// # }
/// # }
/// # pub fn external(egraph: EGraph<SymbolLang, ()>) { }
/// impl From<MyLang> for SymbolLang {
/// fn from(value: MyLang) -> Self {
/// value.0
/// }
/// }
///
/// fn do_thing(egraph: EGraph<MyLang, ()>) {
/// external(SimpleLanguageMapper::default().map_egraph(egraph))
/// }
/// ```
///
/// Note that we do not need to provide any conversion for the analysis, because it
/// is the same in both source and target e-graphs.
pub struct SimpleLanguageMapper<L2, A2> {
_phantom: PhantomData<(L2, A2)>,
}
impl<L, A> Default for SimpleLanguageMapper<L, A> {
fn default() -> Self {
SimpleLanguageMapper {
_phantom: PhantomData,
}
}
}
impl<L, A, L2, A2> LanguageMapper<L, A> for SimpleLanguageMapper<L2, A2>
where
L: Language,
A: Analysis<L>,
L2: Language + From<L>,
A2: Analysis<L2> + From<A>,
<L2 as Language>::Discriminant: From<<L as Language>::Discriminant>,
<A2 as Analysis<L2>>::Data: From<<A as Analysis<L>>::Data>,
{
type L2 = L2;
type A2 = A2;
fn map_node(&self, node: L) -> Self::L2 {
node.into()
}
fn map_discriminant(
&self,
discriminant: <L as Language>::Discriminant,
) -> <Self::L2 as Language>::Discriminant {
discriminant.into()
}
fn map_analysis(&self, analysis: A) -> Self::A2 {
analysis.into()
}
fn map_data(&self, data: <A as Analysis<L>>::Data) -> <Self::A2 as Analysis<Self::L2>>::Data {
data.into()
}
}
/// Given an `Id` using the `egraph[id]` syntax, retrieve the e-class.
impl<L: Language, N: Analysis<L>> std::ops::Index<Id> for EGraph<L, N> {
type Output = EClass<L, N::Data>;
fn index(&self, id: Id) -> &Self::Output {
let id = self.find(id);
self.classes
.get(&id)
.unwrap_or_else(|| panic!("Invalid id {}", id))
}
}
/// Given an `Id` using the `&mut egraph[id]` syntax, retrieve a mutable
/// reference to the e-class.
impl<L: Language, N: Analysis<L>> std::ops::IndexMut<Id> for EGraph<L, N> {
fn index_mut(&mut self, id: Id) -> &mut Self::Output {
let id = self.find_mut(id);
self.classes
.get_mut(&id)
.unwrap_or_else(|| panic!("Invalid id {}", id))
}
}
impl<L: Language, N: Analysis<L>> EGraph<L, N> {
/// Adds a [`RecExpr`] to the [`EGraph`], returning the id of the RecExpr's eclass.
///
/// # Example
/// ```
/// use egg::{*, SymbolLang as S};
/// let mut egraph = EGraph::<S, ()>::default();
/// let x = egraph.add(S::leaf("x"));
/// let y = egraph.add(S::leaf("y"));
/// let plus = egraph.add(S::new("+", vec![x, y]));
/// let plus_recexpr = "(+ x y)".parse().unwrap();
/// assert_eq!(plus, egraph.add_expr(&plus_recexpr));
/// ```
///
/// [`add_expr`]: EGraph::add_expr()
pub fn add_expr(&mut self, expr: &RecExpr<L>) -> Id {
let id = self.add_expr_uncanonical(expr);
self.find(id)
}
/// Similar to [`add_expr`](EGraph::add_expr) but the `Id` returned may not be canonical
///
/// Calling [`id_to_expr`](EGraph::id_to_expr) on this `Id` return a copy of `expr` when explanations are enabled
pub fn add_expr_uncanonical(&mut self, expr: &RecExpr<L>) -> Id {
let nodes = expr.as_ref();
let mut new_ids = Vec::with_capacity(nodes.len());
let mut new_node_q = Vec::with_capacity(nodes.len());
for node in nodes {
let new_node = node.clone().map_children(|i| new_ids[usize::from(i)]);
let size_before = self.unionfind.size();
let next_id = self.add_uncanonical(new_node);
if self.unionfind.size() > size_before {
new_node_q.push(true);
} else {
new_node_q.push(false);
}
if let Some(explain) = &mut self.explain {
node.for_each(|child| {
// Set the existance reason for new nodes to their parent node.
if new_node_q[usize::from(child)] {
explain.set_existance_reason(new_ids[usize::from(child)], next_id);
}
});
}
new_ids.push(next_id);
}
*new_ids.last().unwrap()
}
/// Adds a [`Pattern`] and a substitution to the [`EGraph`], returning
/// the eclass of the instantiated pattern.
pub fn add_instantiation(&mut self, pat: &PatternAst<L>, subst: &Subst) -> Id {
let id = self.add_instantiation_noncanonical(pat, subst);
self.find(id)
}
/// Similar to [`add_instantiation`](EGraph::add_instantiation) but the `Id` returned may not be
/// canonical
///
/// Like [`add_uncanonical`](EGraph::add_uncanonical), when explanations are enabled calling
/// Calling [`id_to_expr`](EGraph::id_to_expr) on this `Id` return an correspond to the
/// instantiation of the pattern
fn add_instantiation_noncanonical(&mut self, pat: &PatternAst<L>, subst: &Subst) -> Id {
let nodes = pat.as_ref();
let mut new_ids = Vec::with_capacity(nodes.len());
let mut new_node_q = Vec::with_capacity(nodes.len());
for node in nodes {
match node {
ENodeOrVar::Var(var) => {
let id = self.find(subst[*var]);
new_ids.push(id);
new_node_q.push(false);
}
ENodeOrVar::ENode(node) => {
let new_node = node.clone().map_children(|i| new_ids[usize::from(i)]);
let size_before = self.unionfind.size();
let next_id = self.add_uncanonical(new_node);
if self.unionfind.size() > size_before {
new_node_q.push(true);
} else {
new_node_q.push(false);
}
if let Some(explain) = &mut self.explain {
node.for_each(|child| {
if new_node_q[usize::from(child)] {
explain.set_existance_reason(new_ids[usize::from(child)], next_id);
}
});
}
new_ids.push(next_id);
}
}
}
*new_ids.last().unwrap()
}
/// Lookup the eclass of the given enode.
///
/// You can pass in either an owned enode or a `&mut` enode,
/// in which case the enode's children will be canonicalized.
///
/// # Example
/// ```
/// # use egg::*;
/// let mut egraph: EGraph<SymbolLang, ()> = Default::default();
/// let a = egraph.add(SymbolLang::leaf("a"));
/// let b = egraph.add(SymbolLang::leaf("b"));
///
/// // lookup will find this node if its in the egraph
/// let mut node_f_ab = SymbolLang::new("f", vec![a, b]);
/// assert_eq!(egraph.lookup(node_f_ab.clone()), None);
/// let id = egraph.add(node_f_ab.clone());
/// assert_eq!(egraph.lookup(node_f_ab.clone()), Some(id));
///
/// // if the query node isn't canonical, and its passed in by &mut instead of owned,
/// // its children will be canonicalized
/// egraph.union(a, b);
/// egraph.rebuild();
/// assert_eq!(egraph.lookup(&mut node_f_ab), Some(id));
/// assert_eq!(node_f_ab, SymbolLang::new("f", vec![a, a]));
/// ```
pub fn lookup<B>(&self, enode: B) -> Option<Id>
where
B: BorrowMut<L>,
{
self.lookup_internal(enode).map(|id| self.find(id))
}
fn lookup_internal<B>(&self, mut enode: B) -> Option<Id>
where
B: BorrowMut<L>,
{
let enode = enode.borrow_mut();
enode.update_children(|id| self.find(id));
self.memo.get(enode).copied()
}
/// Lookup the eclass of the given [`RecExpr`].
///
/// Equivalent to the last value in [`EGraph::lookup_expr_ids`].
pub fn lookup_expr(&self, expr: &RecExpr<L>) -> Option<Id> {
self.lookup_expr_ids(expr)
.and_then(|ids| ids.last().copied())
}
/// Lookup the eclasses of all the nodes in the given [`RecExpr`].
pub fn lookup_expr_ids(&self, expr: &RecExpr<L>) -> Option<Vec<Id>> {
let nodes = expr.as_ref();
let mut new_ids = Vec::with_capacity(nodes.len());
for node in nodes {
let node = node.clone().map_children(|i| new_ids[usize::from(i)]);
let id = self.lookup(node)?;
new_ids.push(id)
}
Some(new_ids)
}
/// Adds an enode to the [`EGraph`].
///
/// When adding an enode, to the egraph, [`add`] it performs
/// _hashconsing_ (sometimes called interning in other contexts).
///
/// Hashconsing ensures that only one copy of that enode is in the egraph.
/// If a copy is in the egraph, then [`add`] simply returns the id of the
/// eclass in which the enode was found.
///
/// Like [`union`](EGraph::union), this modifies the e-graph.
///
/// [`add`]: EGraph::add()
pub fn add(&mut self, enode: L) -> Id {
let id = self.add_uncanonical(enode);
self.find(id)
}
/// Similar to [`add`](EGraph::add) but the `Id` returned may not be canonical