diff --git a/README.md b/README.md index 421c3a2..543d16d 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -# EMBEDR v2.0 +# EMBEDR Author: Eric Johnson \ Date Created: July 1, 2021 \ @@ -16,7 +16,42 @@ statistic is generated via marginal resampling, in order to estimate whether samples are better-embedded than a given DRA might do by chance. For complete details, see our -[preprint](https://www.biorxiv.org/content/10.1101/2020.11.18.389031v2). +[preprint](https://www.biorxiv.org/content/10.1101/2020.11.18.389031v2). + +## Installation + +To install EMBEDR, we recommend cloning this repository before installing using +`pip` in the main project directory. Specifically: + +```bash + pip install . +``` + +The package requires numpy, scikit-learn, scipy, conda, and numba for +installation. To generate figures, the seaborn package is required. +Additionally, it is recommended that you ensure that +[fftw](https://www.fftw.org/) is installed, otherwise you will not be able to +use the fast [FIt-SNE](https://github.com/KlugerLab/FIt-SNE) implementation of +the t-SNE algorithm. You can install fftw using +[homebrew](https://formulae.brew.sh/formula/fftw). + +## Getting Started + +Once you've installed EMBEDR, you can easily generate an embedding colored by +EMBEDR *p*-value by calling the `fit` method in the EMBEDR class as below: + +```python +from EMBEDR import EMBEDR, EMBEDR_sweep +import numpy as np + +X = np.loadtxt("./data/mnist2500_X.txt").astype(float) + +embObj = EMBEDR() +embObj.fit(X) +embObj.plot() +``` + +![Example EMBEDR Plot](EasyUseExample.png) ## New in Version 2.0