-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMDST.py
81 lines (67 loc) · 3.09 KB
/
MDST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import pandas as pd
import networkx as nx
def _find_min_weighted_directed_tree(kd: pd.DataFrame):
""" Finds the minimum weighted directed tree in a graph."""
G = nx.DiGraph()
weights = [list(row) for name, row in kd.iterrows()]
for i in range(len(weights)):
for j in range(len(weights)):
if weights[i][j] < float('inf'):
G.add_edge(i, j, weight=weights[i][j])
min_arborescence = nx.algorithms.tree.branchings.Edmonds(G).find_optimum(attr='weight', default=float('inf'),
kind='min', style='arborescence',
preserve_attrs=False)
return min_arborescence
def build_tree(ku_, dist_, lam_: float, ground_truth_: set, rev: bool = False):
""" Builds a tree from the given distance and kurtosis matrices. """
res = []
if not rev:
T_ = pd.DataFrame(ku_.to_numpy().reshape(-1, 1) > ku_.to_numpy().reshape(1, -1),
index=ku_.index, columns=ku_.index).astype(int).T
else:
T_ = pd.DataFrame(ku_.to_numpy().reshape(-1, 1) < ku_.to_numpy().reshape(1, -1),
index=ku_.index, columns=ku_.index).astype(int).T
diag_ = np.eye(len(T_))
diag_[diag_ == 1] = float('inf')
KD_ = dist_ + lam_ * dist_.mean().mean() * T_ + diag_
KD_ = KD_.sort_index(ascending=False)
KD_ = KD_[sorted(KD_, reverse=True)]
tree_ = _find_min_weighted_directed_tree(KD_)
correct = 0
for edge in tree_.edges(data=True):
formatted_edge = KD_.index[edge[0]] + ' -> ' + KD_.index[edge[1]]
if formatted_edge in ground_truth_:
correct += 1
res.append(formatted_edge)
acc_ = correct / len(ground_truth_) * 100
return res, acc_
def get_ground_truth(r_i: int = None, llama=False, sd=False):
""" Returns the ground truth for the given root index. """
assert sum([r_i is not None, llama, sd]) == 1, \
'Only one of r_i, llama, or sd should be provided.'
if r_i is not None:
return {f'{r_i}-X-X -> {r_i}-3-X', f'{r_i}-X-X -> {r_i}-2-X',
f'{r_i}-X-X -> {r_i}-1-X', f'{r_i}-X-X -> {r_i}-0-X',
f'{r_i}-3-X -> {r_i}-3-3', f'{r_i}-3-X -> {r_i}-3-2',
f'{r_i}-3-X -> {r_i}-3-1', f'{r_i}-3-X -> {r_i}-3-0',
f'{r_i}-2-X -> {r_i}-2-1', f'{r_i}-2-X -> {r_i}-2-0',
f'{r_i}-2-X -> {r_i}-2-3', f'{r_i}-2-X -> {r_i}-2-2',
f'{r_i}-1-X -> {r_i}-1-3', f'{r_i}-1-X -> {r_i}-1-2',
f'{r_i}-1-X -> {r_i}-1-1', f'{r_i}-1-X -> {r_i}-1-0',
f'{r_i}-0-X -> {r_i}-0-3', f'{r_i}-0-X -> {r_i}-0-2',
f'{r_i}-0-X -> {r_i}-0-0', f'{r_i}-0-X -> {r_i}-0-1'}
elif llama:
return {
f'0-X-X -> 0-2-X',
f'0-X-X -> 0-1-X',
f'0-X-X -> 0-0-X',
f'0-0-X -> 0-0-0'
}
elif sd:
return {
'0-X-X -> 0-0-X',
'0-0-X -> 0-0-0',
'0-0-X -> 0-0-1',
'0-0-1 -> 0-0-2'
}