-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMoTHer_LoRA.py
69 lines (55 loc) · 2.58 KB
/
MoTHer_LoRA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import pickle
import warnings
import numpy as np
import pandas as pd
from tqdm import tqdm
from transformers import AutoModel
from utils import calc_ku
from MDST import build_tree, get_ground_truth
from model_graph_lora import LoRAModelGraphNode, LoRAModelGraphNodeMetadata, LoRAModelGraph
warnings.filterwarnings("ignore")
def calc_dist_and_ku(nodes_: dict, layer_kind: str = 'value'):
""" Calculates the distance and kurtosis between the models. """
for i, child_node in enumerate(root.children):
nodes_[f'{root_idx}-{i}-X'] = child_node
for j, grandchild_node in enumerate(child_node.children):
nodes_[f'{root_idx}-{i}-{j}'] = grandchild_node
idx_ = sorted(list(nodes_.keys()))
ku_ = pd.Series(np.nan, index=idx_)
dist_ = pd.DataFrame(0, index=idx_, columns=idx_)
for n, (i, node_) in enumerate(tqdm(nodes_.items())):
model = AutoModel.from_pretrained(node_.metadata.model_path)
# calculate kurtosis of the model:
ku_[i] = calc_ku(model, layer_kind)
# calculate the distance between the models:
for j, other_node in list(nodes_.items())[n:]:
if i == j:
continue
other_model = AutoModel.from_pretrained(other_node.metadata.model_path)
model_dist = 0
for (name, layer), (other_name, other_layer) in zip(model.state_dict().items(),
other_model.state_dict().items()):
if layer_kind not in name:
continue
if not (layer.shape == other_layer.shape):
continue
if len(layer.shape) != 2 or layer.shape[0] != layer.shape[1]:
continue
layer_dist = np.linalg.matrix_rank((layer - other_layer).numpy())
model_dist += layer_dist
dist_[i][j] = dist_[j][i] = model_dist
return ku_, dist_
if __name__ == '__main__':
for subset_name in ['lora_v', 'lora_f']:
with open(os.path.join("dataset", f'{subset_name}_model_graph.pkl'), "rb") as f:
model_graph = pickle.load(f)
roots = model_graph.get_roots()
for root_idx in range(len(roots)):
ground_truth = get_ground_truth(root_idx)
root = roots[root_idx]
nodes = {f'{root_idx}-X-X': root}
ku, dist = calc_dist_and_ku(nodes)
_, acc = build_tree(ku, dist, 0.3, ground_truth)
print(f'[{subset_name}] - ({root_idx}): accuracy: {acc:.2f}%')
print('-' * 100)