-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_graph.py
111 lines (92 loc) · 4.62 KB
/
model_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import shortuuid
class ModelGraphNodeMetadata:
""" Metadata for a node in the model graph """
def __init__(self, args, component_id, depth, dataset_name, num_classes, dataset_short_name, seed, model_path=None):
self.component_id = component_id
self.depth = depth
self.dataset_name = dataset_name
self.num_classes = num_classes
self.dataset_short_name = dataset_short_name
self.seed = seed
self.uuid = shortuuid.ShortUUID().random(length=8)
if model_path is None:
self.model_path = f"{args.output_root}/{dataset_short_name}__" \
f"component_{component_id}__depth_{depth}__uuid_{self.uuid}"
else:
self.model_path = model_path
def __str__(self):
return f"ModelGraphNodeMetadata(component_id={self.component_id}, depth={self.depth}, " \
f"dataset_name={self.dataset_name}, num_classes={self.num_classes}, " \
f"dataset_short_name={self.dataset_short_name}, seed={self.seed}, uuid={self.uuid}, " \
f"model_path={self.model_path})"
def __repr__(self):
return f"ModelGraphNodeMetadata(component_id={self.component_id}, depth={self.depth}, " \
f"dataset_name={self.dataset_name}, num_classes={self.num_classes}, " \
f"dataset_short_name={self.dataset_short_name}, seed={self.seed}, uuid={self.uuid}, " \
f"model_path={self.model_path})"
class ModelGraphNode:
""" Node in the model graph """
def __init__(self, parent, metadata, is_root=False, is_leaf=False):
self.is_root = is_root
self.is_leaf = is_leaf
self.metadata = metadata
self.children = []
self.parent = parent
def __str__(self):
return f"ModelGraphNode(component={self.metadata.component_id}, depth={self.metadata.depth}, " \
f"name={self.metadata.dataset_short_name}, model_path={self.metadata.model_path})"
def __repr__(self):
return f"ModelGraphNode(component={self.metadata.component_id}, depth={self.metadata.depth}, " \
f"name={self.metadata.dataset_short_name}, model_path={self.metadata.model_path})"
def __eq__(self, other):
return self.metadata.uuid == other.metadata.uuid
def __lt__(self, other):
# check if metadata.component_id is the same, if so then check metadata.depth, otherwise check metadata.uuid
if self.metadata.component_id == other.metadata.component_id:
if self.metadata.depth == other.metadata.depth:
return self.metadata.uuid < other.metadata.uuid
return self.metadata.depth < other.metadata.depth
return self.metadata.component_id < other.metadata.component_id
class ModelGraph:
""" Model graph for a given dataset """
def __init__(self, roots):
self.roots = roots
def get_roots(self):
""" Returns all root nodes in the model graph """
return self.roots
def get_first_level_children(self):
""" Returns all first level children in the model graph """
first_level_children = []
for root in self.roots:
for child in root.children:
assert child.metadata.depth == 1, f"Child {child} does not have depth 1"
first_level_children.append(child)
return sorted(first_level_children)
def get_second_level_children(self):
""" Returns all second level children in the model graph """
second_level_children = []
for root in self.roots:
for first_level_child in root.children:
for second_level_child in first_level_child.children:
assert second_level_child.metadata.depth == 2, f"Child {second_level_child} does not have depth 2"
second_level_children.append(second_level_child)
return sorted(second_level_children)
def get_all_nodes(self, sort=True):
""" Returns all nodes in the model graph """
all_nodes = []
for root in self.roots:
all_nodes.append(root)
for first_level_child in root.children:
all_nodes.append(first_level_child)
for second_level_child in first_level_child.children:
all_nodes.append(second_level_child)
if sort:
return sorted(all_nodes)
return all_nodes
def get_node_count(self):
""" Returns the number of nodes in the model graph """
return len(self.get_all_nodes(sort=False))
def __str__(self):
return f"ModelGraph(roots={self.roots})"
def __repr__(self):
return f"ModelGraph(roots={self.roots})"