-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain_glm.cpp
339 lines (290 loc) · 9.36 KB
/
main_glm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#include <iostream>
#include <glm/geometric.hpp>
#include <glm/gtc/epsilon.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtx/quaternion.hpp>
#include <glm/gtx/fast_square_root.hpp>
#include <glm/gtx/fast_trigonometry.hpp>
#include <glm/gtc/matrix_access.hpp>
#include "math.h"
#define _sqrtHalf 0.70710678
#define _gamma 5.828427124 // FOUR_GAMMA_SQUARED = sqrt(8)+3;
#define _cstar 0.923879532 // cos(pi/8)
#define _sstar 0.3826834323 // sin(p/8)
#define _EPSILON_ 1e-6
#define EPSILON _EPSILON_
#define EQ(a, b) (fabs((a) - (b)) < _EPSILON_)
#define NEQ(a, b) (fabs((a) - (b)) > _EPSILON_)
void printMat3(glm::mat3 mat) {
// prints by rows
for (int j=0; j<3; ++j) // g3d stores column-major
{
for (int i=0; i<3; ++i)
{
printf("%f ", mat[i][j]);
}
printf("\n");
}
printf("\n");
}
void printQuat(glm::quat q)
{
std::cout << q.w << " " << q.x << " " << q.y << " " << q.z <<std::endl;
//std::cout << q[3] << " " << q[0] << " " << q[1] << " " << q[2] <<std::endl;
}
inline float accurateRSQRT(float x)
{
// used in step 3
// cool result from Lomont 2003
float y = glm::fastSqrt(x);
return y * (3-x*y*y)/2;
}
inline float accurateSQRT(float x) { return x * accurateRSQRT(x); } // used in step 3
void condSwap(bool c, float &X, float &Y)
{
// used in step 2
float Z = X;
X = c ? Y : X;
Y = c ? Z : Y;
}
// swapping functions for entire rows
void condSwap(bool c, glm::vec3 &X, glm::vec3 &Y)
{
// used in step 2
glm::vec3 Z = X;
X = c ? Y : X;
Y = c ? Z : Y;
}
void condNegSwap(bool c, glm::vec3 &X, glm::vec3 &Y)
{
// used in step 2 and 3
glm::vec3 Z = -X;
X = c ? Y : X;
Y = c ? Z : Y;
}
void condNegSwap(bool c, int c1, int c2, glm::quat &qV)
{
// condNegSwap can be modified to operate well
// on quaternion representation of V
glm::quat qR;
// qR = (1, 0, 0, c) for 1,2
// what are the other quaternions corresponding to the other rot matrices?
qV = qV * qR;
}
//void approximateGivensAngles(float a11, float a12, float a22, float &c, float &s)
//{
// // this function is unused
// // problem, second round the angles are flipped?
// /*
// * approximates givens angles for 2x2 submatrix. used in step 1
// *
// * A = (a11 a12
// * a12 a22)
// *
// * where 1,2 correspond to p,q values for givens rotation of a 3x3 matrix
// */
// float A2 = a12 * a12;
// float B2 = (a11-a22)*(a11-a22);
// bool b = A2 < B2;
// //float w = rsqrt(A2+B2);
// float w = glm::fastInverseSqrt(A2+B2);
// s = b ? w*a12 : _sqrtHalf;
// c = b ? w*(a11-a22) : _sqrtHalf;
// // we can represent this rotation with quaternion
// // (cos(theta/2),0,0,sin(theta/2)) for p,q = 1,2
// // up to the user to build the appropriate quaternion or rotation matrix
//}
void approximateGivensQuaternion(float a11, float a12, float a22, float &ch, float &sh)
{
/*
* Given givens angle computed by approximateGivensAngles,
* compute the corresponding rotation quaternion.
*/
// used during second half of each jacobi iteration step?
ch = 2*(a11-a22);
sh = a12;
bool b = _gamma*sh*sh < ch*ch;
float w = glm::fastInverseSqrt(ch*ch+sh*sh);
ch=b?w*ch:_cstar;
sh=b?w*sh:_sstar;
//qV=glm::quat(ch,0,0,sh)
//up to the user to build the appropriate quaternion or unscaled rotation matrix
}
void jacobiConjugation(int p, int q, glm::mat3 &S, glm::quat &qV)
{
//std::cout << "matrix before conjugation" << std::endl;
//printMat3(S);
// eliminate off-diagonal entries Spq, Sqp
float ch,sh;
approximateGivensQuaternion(S[0][0],S[1][0],S[1][1],ch,sh);
// build rotation matrix Q
glm::mat3 Q;
float scale = ch*ch+sh*sh;
float a = (ch*ch-sh*sh)/scale;
float b = (2*sh*ch)/scale;
// printf("a=%f, b=%f \n", a, b );
Q[0][0] = a; Q[1][0] = -b;
Q[0][1] = b; Q[1][1] = a;
// perform the conjugation to annihilate S = Q' S Q
S =glm::transpose(Q) * S * Q;
// std::cout << "result of conjugation" << std::endl;
// printMat3(S);
// update cumulative rotation quaternion qV
// tmp1, tmp2, tmp3
glm::vec3 tmp(qV.x,qV.y,qV.z);
tmp *= sh;
sh *= qV.w;
// printf("sh=%f\n",sh);
// original
qV *= ch;
// this arranges such that for (p,q) = ((0,1),(1,2),(0,2)),
// n = (0,1,2)
int n = 2*q-p-2; // worst hack in the world
int x = n;
int y = (n+1)%3;
int z = (n+2)%3;
qV[z] += sh;
qV.w -= tmp[z];
qV[x] += tmp[y];
qV[y] -= tmp[x];
// re-arrange matrix for next iteration
S = glm::mat3(S[1][1], S[1][2], S[1][0],
S[1][2], S[2][2], S[0][2],
S[1][0], S[0][2], S[0][0]);
}
void sortSingularValues(glm::mat3 &B, glm::mat3 &V)
{
// used in step 2
glm::vec3 b1 = glm::column(B,0); glm::vec3 v1 = glm::column(V,0);
glm::vec3 b2 = glm::column(B,1); glm::vec3 v2 = glm::column(V,1);
glm::vec3 b3 = glm::column(B,2); glm::vec3 v3 = glm::column(V,2);
float rho1 = glm::length2(b1);
float rho2 = glm::length2(b2);
float rho3 = glm::length2(b3);
bool c;
c = rho1 < rho2;
condNegSwap(c,b1,b2); condNegSwap(c,v1,v2);
condSwap(c,rho1,rho2);
c = rho1 < rho3;
condNegSwap(c,b1,b3); condNegSwap(c,v1,v3);
condSwap(c,rho1,rho3);
c = rho2 < rho3;
condNegSwap(c,b2,b3); condNegSwap(c,v2,v3);
// re-build B,V
B = glm::mat3(b1,b2,b3);
V = glm::mat3(v1,v2,v3);
}
void QRGivensQuaternion(float a1, float a2, float &ch, float &sh)
{
// a1 = pivot point on diagonal
// a2 = lower triangular entry we want to annihilate
float epsilon = EPSILON;
float rho = sqrt(a1*a1 + a2*a2);
sh = rho > epsilon ? a2 : 0;
ch = fabs(a1) + fmax(rho,epsilon);
bool b = a1 < 0;
condSwap(b,sh,ch);
float w = glm::inversesqrt(ch*ch+sh*sh);
//float w = glm::fastInverseSqrt(ch*ch+sh*sh);
ch *= w;
sh *= w;
}
void QRDecomposition(glm::mat3 B, glm::mat3 &Q, glm::mat3 &R)
{
// QR decomposition of 3x3 matrices using Givens rotations to
// eliminate elements B21, B31, B32
glm::quat qQ; // cumulative rotation
glm::quat qU; // each Givens rotation in quaternion form
glm::mat3 U;
float ch, sh;
QRGivensQuaternion(B[0][0],B[0][1],ch,sh);
qU = glm::quat(ch,0,0,sh);
U = glm::toMat3(qU);
B = glm::transpose(U) * B;
// update cumulative rotation
qQ *= qU;
// second givens rotation
QRGivensQuaternion(B[0][0],B[0][2],ch,sh);
qU = glm::quat(ch,0,-sh,0);
U = glm::toMat3(qU);
B = glm::transpose(U) * B;
qQ *= qU;
// third Givens rotation
QRGivensQuaternion(B[1][1],B[1][2],ch,sh);
qU = glm::quat(ch,sh,0,0);
U = glm::toMat3(qU);
B = glm::transpose(U) * B;
qQ *= qU;
// B has been transformed into R
R = B;
// qQ now contains final rotation for Q
Q = glm::toMat3(qQ);
}
void jacobiEigenanalysis(glm::mat3 &S, glm::quat &qV)
{
// wrapper function for the first step
// solve symmetric eigenproblem using jacobi iteration
// given a symmetric matrix S, diagonalize it
// also returns the cumulative rotation as a quaternion
qV = glm::quat(1,0,0,0);
float scale;
int p; int q;
for(int sweep=0;sweep<4;sweep++)
{
// we wish to eliminate the maximum off-diagonal element
// on every iteration, but cycling over all 3 possible rotations
// in fixed order (p,q) = (1,2) , (2,3), (1,3) still has
// asymptotic convergence
jacobiConjugation(0,1,S,qV);
jacobiConjugation(1,2,S,qV);
jacobiConjugation(0,2,S,qV);
}
}
int main()
{
// run a simpe test
glm::mat3 A;
// GLM stores matrices in column-major order so this initialization is the transpose of what we want
A = glm::mat3( -0.558253, -0.0461681, -0.505735,
-0.411397 , 0.0365854 , 0.199707,
0.285389 , -0.313789 , 0.200189);
A = glm::transpose(A);
std::cout << "original matrix" << std::endl;
printMat3(A);
/// 2. Symmetric Eigenanlysis
// normal equations matrix
glm::mat3 S = glm::transpose(A) * A;
// std::cout << "normal equations matrix" << std::endl;
// printMat3(S);
glm::quat qV;
jacobiEigenanalysis(S,qV);
std::cout << "final S (diagonalized) " << std::endl;
printMat3(S);
std::cout << "cumulative rotation quaternion" << std::endl;
printQuat(qV);
glm::mat3 V = glm::toMat3(qV); // normalize qV, convert it to matrix
//std::cout << "final rot matrix V" << std::endl;
//printMat3(V);
glm::mat3 B = A * V; // right-multiply A with V => left multiply for column major
std::cout << "B=AV" << std::endl;
//printMat3(B);
///// 3. Sorting the singular values (find V)
sortSingularValues(B,V);
//std::cout << "sorted B=AV" << std::endl;
//printMat3(B);
std::cout << "sorted V" << std::endl;
printMat3(V);
// // if columns 2-3 swapped, also update quaternion representation (i dont think we need to though since we're not tracking quats)
///// 4. QR factorization using Givens rotations (find U,S from B=AV)
glm::mat3 U;
glm::mat3 Sigma;
QRDecomposition(B,U,Sigma);
std::cout << "U" << std::endl;
printMat3(U);
std::cout << "Sigma" << std::endl;
printMat3(Sigma);
glm::mat3 USV = U * Sigma * glm::transpose(V);
std::cout << "product USV'"<< std::endl;
printMat3(USV);
return 0;
}