-
Notifications
You must be signed in to change notification settings - Fork 0
/
Linkage Criteria.py
57 lines (57 loc) · 1.97 KB
/
Linkage Criteria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Enter code for the Cluster class in this box
class Cluster(object):
""" A Cluster is defines as a set of elements, all having
a particular type """
def __init__(self, points, pointType):
""" Elements of a cluster are saved in self.points
and the pointType is also saved """
self.points = points
self.pointType = pointType
def singleLinkageDist(self, other):
minDist = self.points[0].distance(other.points[0])
for p1 in self.points:
for p2 in other.points:
if p1.distance(p2) < minDist:
minDist = p1.distance(p2)
return minDist
def maxLinkageDist(self, other):
maxDist = self.points[0].distance(other.points[0])
for p1 in self.points:
for p2 in other.points:
if p1.distance(p2) > maxDist:
maxDist = p1.distance(p2)
return maxDist
def averageLinkageDist(self, other):
totDist = 0.0
for p1 in self.points:
for p2 in other.points:
totDist += p1.distance(p2)
return totDist/(len(self.points)*len(other.points))
def members(self):
for p in self.points:
yield p
def isIn(self, name):
""" Returns True is the element named name is in the cluster
and False otherwise """
for p in self.points:
if p.getName() == name:
return True
return False
def toStr(self):
result = ''
for p in self.points:
result = result + p.toStr() + ', '
return result[:-2]
def getNames(self):
""" For consistency, returns a sorted list of all
elements in the cluster """
names = []
for p in self.points:
names.append(p.getName())
return sorted(names)
def __str__(self):
names = self.getNames()
result = ''
for p in names:
result = result + p + ', '
return result[:-2]