This repository has been archived by the owner on Aug 31, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbaseline2_train.py
133 lines (103 loc) · 4.55 KB
/
baseline2_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from interactivity import INTERACTIVE, try_magic, try_cd
try_cd('~/dev/drawmodel/nkcodraw')
#%%
assert __name__ == "__main__", "Training script should not be imported!"
#%%
import numpy as np
from pathlib import Path
import editdistance
import torch
import torch.cuda
import torch.nn as nn
import torch.nn.functional as F
from nkfb_util import logsumexp, cuda_if_available
import codraw_data
from codraw_data import AbstractScene, Clipart
import abs_render
from abs_metric import scene_similarity, clipart_similarity
from episode import Episode, respond_to, response_partial
from datagen import BOWAddUpdateData
from baseline2_models import BOWAddOnlyDrawer, LSTMAddOnlyDrawer
import model
from model import make_fns, eval_fns
from model import scripted_tell, scripted_tell_before_peek, scripted_tell_after_peek
# %%
data_bowaddupdate_a = BOWAddUpdateData('a')
data_bowaddupdate_b = BOWAddUpdateData('b')
# %%
# drawer_bowaddonly_a = BOWAddOnlyDrawer(data_bowaddupdate_a)
# drawer_bowaddonly_b = BOWAddOnlyDrawer(data_bowaddupdate_b)
#
# optimizer_bowaddonly_a = torch.optim.Adam(drawer_bowaddonly_a.parameters())
# optimizer_bowaddonly_b = torch.optim.Adam(drawer_bowaddonly_b.parameters())
#%%
# for epoch in range(15):
# drawer_bowaddonly_a.train()
# for num, ex in enumerate(drawer_bowaddonly_a.datagen.get_examples_batch()):
# optimizer_bowaddonly_a.zero_grad()
# loss = drawer_bowaddonly_a.forward(ex)
# loss.backward()
# optimizer_bowaddonly_a.step()
#
# print(f'Done epoch {epoch} loss {float(loss)}')
# if epoch % 1 == 0:
# for split in ('a',):
# sims = eval_fns(make_fns(split, scripted_tell, (drawer_bowaddonly_a, drawer_bowaddonly_b)), limit=100)
# print(split, sims.mean())
#
# sims = eval_fns(make_fns(split, scripted_tell_before_peek, (drawer_bowaddonly_a, drawer_bowaddonly_b)), limit=100)
# print(split, 'before', sims.mean())
#
# sims = eval_fns(make_fns(split, scripted_tell_after_peek, (drawer_bowaddonly_a, drawer_bowaddonly_b)), limit=100)
# print(split, 'after', sims.mean())
# %%
drawer_lstmaddonly_a = LSTMAddOnlyDrawer(data_bowaddupdate_a)
drawer_lstmaddonly_b = LSTMAddOnlyDrawer(data_bowaddupdate_b)
optimizer_lstmaddonly_a = torch.optim.Adam(drawer_lstmaddonly_a.parameters())
optimizer_lstmaddonly_b = torch.optim.Adam(drawer_lstmaddonly_b.parameters())
#%%
for epoch in range(15):
drawer_lstmaddonly_a.train()
for num, ex in enumerate(drawer_lstmaddonly_a.datagen.get_examples_batch()):
optimizer_lstmaddonly_a.zero_grad()
loss = drawer_lstmaddonly_a.forward(ex)
loss.backward()
optimizer_lstmaddonly_a.step()
print(f'Done epoch {epoch} loss {float(loss)}')
if epoch % 1 == 0:
for split in ('a',):
sims = eval_fns(make_fns(split, scripted_tell, (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=100)
print(split, sims.mean())
sims = eval_fns(make_fns(split, scripted_tell_before_peek, (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=100)
print(split, 'before', sims.mean())
sims = eval_fns(make_fns(split, scripted_tell_after_peek, (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=100)
print(split, 'after', sims.mean())
#%%
for epoch in range(15):
drawer_lstmaddonly_b.train()
for num, ex in enumerate(drawer_lstmaddonly_b.datagen.get_examples_batch()):
optimizer_lstmaddonly_b.zero_grad()
loss = drawer_lstmaddonly_b.forward(ex)
loss.backward()
optimizer_lstmaddonly_b.step()
print(f'Done epoch {epoch} loss {float(loss)}')
if epoch % 1 == 0:
for split in ('b',):
sims = eval_fns(make_fns(split, scripted_tell, (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=100)
print(split, sims.mean())
sims = eval_fns(make_fns(split, scripted_tell_before_peek, (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=100)
print(split, 'before', sims.mean())
sims = eval_fns(make_fns(split, scripted_tell_after_peek, (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=100)
print(split, 'after', sims.mean())
# %%
lstmaddonly_specs = dict(
drawer_lstmaddonly_a = drawer_lstmaddonly_a.spec,
drawer_lstmaddonly_b = drawer_lstmaddonly_b.spec,
)
#%%
torch.save(lstmaddonly_specs, Path('models/lstmaddonly.pt'))