This repository has been archived by the owner on Aug 31, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbaseline4_models.py
210 lines (169 loc) · 7.29 KB
/
baseline4_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#%%
import numpy as np
from pathlib import Path
import torch
import torch.cuda
import torch.nn as nn
import torch.nn.functional as F
from nkfb_util import logsumexp, cuda_if_available, torch_load
from attention import AttentionSeqToMasked
import codraw_data
from codraw_data import AbstractScene, Clipart
import abs_render
from abs_metric import scene_similarity, clipart_similarity
from episode import Episode, Transcriber, respond_to
from model import make_fns, eval_fns
from model import Model
from baseline3_models import SceneToSeqTeller
# %%
def process_episode(episode,
brw_rewards, brw_discounted_rewards,
utterance_penalty,
gamma,
uninformative_penalty,
):
scene_sims = None
for event in episode:
if isinstance(event, codraw_data.ObserveTruth):
drawn_scene = []
true_scene = event.scene
scene_sims = []
reward_idxs = []
yield event
elif isinstance(event, codraw_data.TellGroup):
if reward_idxs:
base_idx = reward_idxs[-1] + 1
else:
base_idx = 0
offset = len(event.msg.split())
if offset >= 50:
offset = 50 - 1
reward_idxs.append(base_idx + offset)
yield event
elif isinstance(event, (codraw_data.ObserveCanvas, codraw_data.ReplyGroup)):
yield event
elif isinstance(event, codraw_data.DrawGroup):
assert drawn_scene is not None
drawn_scene = [c for c in drawn_scene if c.idx not in [c2.idx for c2 in event.cliparts]]
drawn_scene.extend(event.cliparts)
scene_sims.append(scene_similarity(drawn_scene, true_scene))
yield codraw_data.SetDrawing(drawn_scene)
elif isinstance(event, codraw_data.SetDrawing):
scene_sims.append(scene_similarity(event.scene, true_scene))
yield event
if scene_sims is not None:
rewards = np.array(scene_sims) - np.array([0] + scene_sims[:-1])
rewards = np.where(rewards > 0, rewards, -uninformative_penalty)
if len(rewards) >= 50:
rewards = np.array(list(rewards - utterance_penalty))
else:
rewards = np.array(list(rewards - utterance_penalty) + [0])
if reward_idxs:
reward_idxs.append(reward_idxs[-1] + 1)
else:
reward_idxs.append(0)
new_brw_rewards = np.zeros(reward_idxs[-1] + 1)
new_brw_rewards[np.array(reward_idxs)] = rewards
brw_rewards.extend(list(new_brw_rewards))
brw_discounted_rewards.extend(list(discount_rewards(new_brw_rewards, gamma)))
def discount_rewards(r, gamma=0.99):
""" take 1D float array of rewards and compute discounted reward """
# https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5
r = np.asarray(r)
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(range(0, r.size)):
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def examples_from_episodes(episodes, dg, utterance_penalty, gamma, uninformative_penalty):
brw_rewards = []
brw_discounted_rewards = []
episodes = [list(process_episode(episode,
brw_rewards, brw_discounted_rewards,
utterance_penalty,
gamma,
uninformative_penalty,
))
for episode in episodes]
example_batch = dg.tensors_from_episodes(episodes + [[codraw_data.ObserveTruth([])]])
example_batch['brw_rewards'] = torch.tensor(brw_rewards, dtype=torch.float, device=cuda_if_available)
example_batch['brw_discounted_rewards'] = torch.tensor(brw_discounted_rewards, dtype=torch.float, device=cuda_if_available)
return example_batch
# %%
def collect_episodes(fns,
dg,
scenes=codraw_data.get_scenes('dev'),
batch_size=16,
utterance_penalty=0.25,
gamma=0.99,
uninformative_penalty=0.3
):
with torch.no_grad():
episodes = []
for scene in np.random.choice(scenes, batch_size):
ep = Episode.run(scene, fns)
episodes.append(ep)
example_batch = examples_from_episodes(
episodes,
dg=dg,
utterance_penalty=utterance_penalty,
gamma=gamma,
uninformative_penalty=uninformative_penalty,
)
return episodes, example_batch
# %%
class RLSceneToSeqTeller(SceneToSeqTeller):
def disable_dropout(self):
for module in self.modules():
if isinstance(module, nn.Dropout):
module.p = 0
def calc_rl_loss(self, example_batch):
dg = self.datagen
b_clipart_tags = self.tag_embs(example_batch['b_scene_tags']).view(-1, dg.NUM_INDEX, self.d_clipart_tags)
packer = example_batch['packer']
ob_clipart_tags = packer.ob_from_b(b_clipart_tags)
ob_clipart_tags = self.pre_attn_tag_dropout(ob_clipart_tags)
ob_scene_mask = packer.ob_from_b(example_batch['b_scene_mask'])
brw_teller_tokens_in = example_batch['brw_teller_tokens_in']
brw_embs = self.pre_lstm_emb_dropout(self.word_embs(brw_teller_tokens_in))
orwb_embs = packer.orwb_from_brw_pack(brw_embs)
orwb_attended_values_prelstm = self.attn_prelstm(orwb_embs, ob_clipart_tags, ob_clipart_tags, k_mask=ob_scene_mask)
orwb_lstm_in = nn.utils.rnn.PackedSequence(torch.cat([
orwb_embs.data,
orwb_attended_values_prelstm.data,
], -1), orwb_embs.batch_sizes)
orwb_lstm_out, _ = self.lstm(orwb_lstm_in)
orwb_lstm_out = nn.utils.rnn.PackedSequence(self.post_lstm_dropout(orwb_lstm_out.data), orwb_lstm_out.batch_sizes)
orwb_attended_values = self.attn(orwb_lstm_out, ob_clipart_tags, ob_clipart_tags, k_mask=ob_scene_mask)
brw_pre_project = torch.cat([
packer.brw_from_orwb_unpack(orwb_lstm_out),
packer.brw_from_orwb_unpack(orwb_attended_values),
], -1)
brw_word_logits = self.word_project(brw_pre_project)
brw_word_losses = F.cross_entropy(brw_word_logits, example_batch['brw_teller_tokens_out'], reduce=False)
b_word_losses = nn.utils.rnn.pad_packed_sequence(packer.orwb_from_brw_pack(brw_word_losses))[0].sum(0)
print('mean nll', float(b_word_losses.mean()))
# Discounting occurs at every word
# brw_discounted_rewards = example_batch['brw_discounted_rewards'][:brw_word_losses.shape[0]]
# XXX(nikita): clipping here seems wrong. Make sure there are no more crashes!
brw_discounted_rewards = example_batch['brw_discounted_rewards']
# TODO(nikita): what is the right baseline?
baseline = 0.8
brw_discounted_rewards = brw_discounted_rewards - baseline
brw_rl_losses = brw_word_losses * brw_discounted_rewards
rl_loss = brw_rl_losses.mean()
return rl_loss
# %%
def load_baseline4():
models = {}
rl_spec_a = torch_load('models/rl_nodict_aug2.pt')
models['teller_rl_a'] = RLSceneToSeqTeller(spec=rl_spec_a)
models['teller_rl_b'] = None
models['teller_rl_a'].eval()
return models