We provide all the models used in our paper. Further, we also provide the input files to vary the problem complexity of Jigsaw and Colorization approaches by varying the number of permutations and number of color bins respectively.
- ImageNet-1K supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/caffenet_bvlc_in1k_supervised.npy
- Places-205 supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/caffenet_bvlc_places205_supervised.pkl
- Jigsaw ImageNet-1K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/alexnet_jigsaw_in1k_pretext.pkl
- Jigsaw ImageNet-22K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/alexnet_jigsaw_in22k_pretext.pkl
- Jigsaw YFCC100M self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/alexnet_jigsaw_yfcc100m_pretext.pkl
- Colorization ImageNet-1K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/alexnet_colorization_in1k_pretext.pkl
- Colorization ImageNet-22K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/alexnet_colorization_in22k_pretext.pkl
- Colorization YFCC100M self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/alexnet_colorization_yfcc100m_pretext.pkl
- ImageNet-1K supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_in1k_supervised.pkl
- Places-205 supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_places205_supervised.pkl
- Jigsaw ImageNet-1K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_jigsaw_in1k_pretext.pkl
- Jigsaw ImageNet-22K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_jigsaw_in22k_pretext.pkl
- Jigsaw YFCC100M self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_jigsaw_yfcc100m_pretext.pkl
- Jigsaw ImageNet-22K self-supervised for object detection: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_jigsaw_detection_in22k_pretext.pkl
- Colorization ImageNet-1K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_colorization_in1k_pretext.pkl
- Colorization ImageNet-22K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_colorization_in22k_pretext.pkl
- Colorization ImageNet-22K self-supervised for Low-shot training: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_colorization_lowShot_in22k_pretext.pkl
- Colorization YFCC100M self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_colorization_yfcc100m_pretext.pkl
-
ImageNet-1K supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/detection/resnet50_in1k_supervised.pkl
-
Places-205 supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/detection/resnet50_places205_supervised.pkl
-
Jigsaw ImageNet-1K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/detection/resnet50_jigsaw_in1k_pretext.pkl
-
Jigsaw ImageNet-22K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/detection/resnet50_jigsaw_in22k_pretext.pkl
-
Jigsaw YFCC100M self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/detection/resnet50_jigsaw_yfcc100m_pretext.pkl
-
Selective Search Proposals VOC2007 trainval: https://dl.fbaipublicfiles.com/detectron/selective_search_proposals/selective_search_msra_voc_2007_trainval.pkl
-
Selective Search Proposals VOC2007 test: https://dl.fbaipublicfiles.com/detectron/selective_search_proposals/selective_search_msra_voc_2007_test.pkl
-
Selective Search Proposals VOC2012 trainval: https://dl.fbaipublicfiles.com/detectron/selective_search_proposals/selective_search_msra_voc_2012_trainval.pkl
- ImageNet-1K supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_in1k_supervised_gibson.dat
- Jigsaw ImageNet-22K self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_jigsaw_in22k_pretext_gibson.dat
- Jigsaw YFCC100M self-supervised: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/models/resnet50_in1k_supervised_gibson.dat
- Ground Truth surface normals and their metadata: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/nyuv2_surfacenormal_metadata.zip
All permutations below are for 9 patches:
- 100 permutations: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/jigsaw_permutations/naroozi_perms_100_patches_9_max.npy
- 701 permutations: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/jigsaw_permutations/naroozi_perms_701_patches_9_max.npy
- 2000 permutations: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/jigsaw_permutations/hamming_perms_2000_patches_9_max_avg.npy
- 5000 permutations: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/jigsaw_permutations/hamming_perms_5000_patches_9_max_avg.npy
- 10000 permutations: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/jigsaw_permutations/hamming_perms_10000_patches_9_max_avg.npy
Number of color bins vary based on the bin size used. We generate the color bins and priors for various bin sizes:
-
Bin size 10 colors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/priors_train_imagenet1k_bin10.npy
-
Bin size 10 color priors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/pts_in_hull_train_imagenet1k_bin10.npy
-
Bin size 15 colors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/priors_train_imagenet1k_bin15.npy
-
Bin size 15 colors priors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/pts_in_hull_train_imagenet1k_bin15.npy
-
Bin size 20 colors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/priors_train_imagenet1k_bin20.npy
-
Bin size 20 colors priors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/pts_in_hull_train_imagenet1k_bin20.npy
-
Bin size 5 colors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/priors_train_imagenet1k_bin5.npy
-
Bin size 5 colors priors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/pts_in_hull_train_imagenet1k_bin5.npy
-
Original work Bin size 10 colors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/zhang_prior_probs.npy
-
Original work Bin size 10 colors priors: https://dl.fbaipublicfiles.com/fair_self_supervision_benchmark/colorization_bins_priors/zhang_pts_in_hull.npy