-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathdump_hubert_feature.py
93 lines (77 loc) · 3.05 KB
/
dump_hubert_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
import fairseq
import soundfile as sf
import torch
import torch.nn.functional as F
from feature_utils import get_path_iterator, dump_feature
from fairseq.data.audio.audio_utils import get_features_or_waveform
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("dump_hubert_feature")
class HubertFeatureReader(object):
def __init__(self, ckpt_path, layer, max_chunk=1600000):
(
model,
cfg,
task,
) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
self.model = model[0].eval().cuda()
self.task = task
self.layer = layer
self.max_chunk = max_chunk
logger.info(f"TASK CONFIG:\n{self.task.cfg}")
logger.info(f" max_chunk = {self.max_chunk}")
def read_audio(self, path, ref_len=None):
wav = get_features_or_waveform(path, need_waveform=True, use_sample_rate=self.task.cfg.sample_rate)
if wav.ndim == 2:
wav = wav.mean(-1)
assert wav.ndim == 1, wav.ndim
if ref_len is not None and abs(ref_len - len(wav)) > 160:
logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
return wav
def get_feats(self, path, ref_len=None):
x = self.read_audio(path, ref_len=ref_len)
with torch.no_grad():
x = torch.from_numpy(x).float().cuda()
if self.task.cfg.normalize:
x = F.layer_norm(x, x.shape)
x = x.view(1, -1)
feat = []
for start in range(0, x.size(1), self.max_chunk):
x_chunk = x[:, start : start + self.max_chunk]
feat_chunk, _ = self.model.extract_features(
source=x_chunk,
padding_mask=None,
mask=False,
output_layer=self.layer,
)
feat.append(feat_chunk)
return torch.cat(feat, 1).squeeze(0)
def main(tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk):
reader = HubertFeatureReader(ckpt_path, layer, max_chunk)
generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank)
dump_feature(reader, generator, num, split, nshard, rank, feat_dir)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("tsv_dir")
parser.add_argument("split")
parser.add_argument("ckpt_path")
parser.add_argument("layer", type=int)
parser.add_argument("nshard", type=int)
parser.add_argument("rank", type=int)
parser.add_argument("feat_dir")
parser.add_argument("--max_chunk", type=int, default=1600000)
args = parser.parse_args()
logger.info(args)
main(**vars(args))