-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdat_proc.R
199 lines (168 loc) · 5.92 KB
/
dat_proc.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
library(lubridate)
library(tidyverse)
library(WtRegDO)
library(doParallel)
library(patchwork)
library(here)
library(janitor)
library(readxl)
# piermont data prep ------------------------------------------------------
met <- read.table('data/raw/piermont_met_all_2017.txt', sep = '\t', header = F) %>%
rename(
DateTimeStamp = V1,
PAR = V2,
rain = V3,
ATemp = V4,
RH = V5,
WD = V6,
WSpd = V7,
Gust = V8,
blankT = V9,
blankRH = V10,
BP = V11
) %>%
select(DateTimeStamp, ATemp, BP, WSpd) %>%
mutate(
DateTimeStamp = mdy_hms(DateTimeStamp, tz = 'America/Jamaica')
) %>%
arrange(DateTimeStamp)
wq <- read.table('data/raw/piermont_ysi_2017correct.txt', sep = '\t') %>%
rename(
DateTimeStamp = V1,
BP = V2,
Temp = V3,
Cond = V4,
Sal = V5,
depth = V6,
pH = V7,
pHvolt= V8,
NTU = V9,
blank = V10,
O2sat = V11,
time = V12,
DO_obs = V13,
battery = V14,
depthcorr = V15
) %>%
mutate(
DateTimeStamp = mdy_hm(DateTimeStamp, tz = 'America/Jamaica')
) %>%
select(DateTimeStamp, Temp, Sal, DO_obs, Tide = depthcorr) %>%
na.omit() %>%
arrange(DateTimeStamp) %>%
group_by(DateTimeStamp) %>%
summarise_all(mean, na.rm = T)
PIERMO2017 <- inner_join(wq, met, by = 'DateTimeStamp') %>%
arrange(DateTimeStamp) %>%
mutate(
DateTimeStamp = format(DateTimeStamp, '%m/%d/%Y %H:%M')
)
write.csv(PIERMO2017, 'data/raw/PIERMO2017.csv', row.names = F)
# process wtregdo ---------------------------------------------------------
wingrds <- crossing(
tibble(flnm = c('APNERR', 'APNERR2018', 'APNERR2020', 'HUDNERR', 'SAPDC', 'PIERMO', 'PIERMO2017'), tz = c('America/Jamaica', 'America/Jamaica', 'America/Jamaica', 'America/Jamaica', 'America/Jamaica', 'America/Jamaica', 'America/Jamaica'), lat = c(29.75, 29.75, 29.75, 42.017, 31.39, 41.04, 41.04), long = c(-85, -85, -85, -73.915, -81.28, -73.90, -73.90)),
daywin = c(1, 3, 6, 9, 12),
hrswin = c(1, 3, 6, 9, 12),
tidwin = c(0.2, 0.4, 0.6, 0.8, 1)
)
# use this to filter out new files from the grid
wingrds <- wingrds %>%
filter(flnm %in% 'APNERR2020')
ncores <- detectCores()
registerDoParallel(cores = ncores - 1)
strt <- Sys.time()
foreach(i = 1:nrow(wingrds), .packages = c('WtRegDO', 'here', 'dplyr', 'lubridate')) %dopar% {
sink('log.txt')
cat(i, 'of', nrow(wingrds), '\n')
print(Sys.time()-strt)
sink()
flnm <- wingrds[[i, 'flnm']]
tz <- wingrds[[i, 'tz']]
lat <- wingrds[[i, 'lat']]
long <- wingrds[[i, 'long']]
dy <- wingrds[[i, 'daywin']]
hr <- wingrds[[i, 'hrswin']]
td <- wingrds[[i, 'tidwin']]
# data
dat <- read.csv(here('data/raw/', paste0(flnm, '.csv'))) %>%
mutate(DateTimeStamp = mdy_hm(DateTimeStamp, tz = tz)) %>%
na.omit %>%
unique
# weighted regression, optimal window widths for SAPDC from the paper
wtreg_res <- wtreg(dat, parallel = F, wins = list(dy, hr, td), progress = F,
tz = tz, lat = lat, long = long)
# estimate ecosystem metabolism using observed DO time series
metab_obs <- ecometab(wtreg_res, DO_var = 'DO_obs', tz = tz,
lat = lat, long = long)
# estimate ecosystem metabolism using detided DO time series
metab_dtd <- ecometab(wtreg_res, DO_var = 'DO_nrm', tz = tz,
lat = lat, long = long)
# file base name
flbs <- paste(flnm, dy, hr, td, sep = '_')
# save do
fldo <- paste0('DO_', flbs)
assign(fldo, wtreg_res)
save(list = fldo, file = paste0('data/', fldo, '.RData'), compress = 'xz')
# save metab, obs do
flmetobs <- paste0('metobs_', flbs)
assign(flmetobs, metab_obs)
save(list = flmetobs, file = paste0('data/', flmetobs, '.RData'), compress = 'xz')
# save metab, dtd do
flmetdtd <- paste0('metdtd_', flbs)
assign(flmetdtd, metab_dtd)
save(list = flmetdtd, file = paste0('data/', flmetdtd, '.RData'), compress = 'xz')
}
# optimal window widths from results above --------------------------------
# devtools::load_all('../WtRegDO/')
mins <- list.files('data/', pattern = '^metdtd_') %>%
tibble(fl = .) %>%
mutate(
fl = gsub('\\.RData$', '', fl),
nm = gsub('^metdtd_(.*)_.*_.*_.*$', '\\1', fl)
) %>%
group_by(nm) %>%
nest() %>%
mutate(
metobs = purrr::map(nm, function(nm){
flobs <- list.files('data', paste0('metobs_', nm))[1]
flobs <- gsub('\\.RData$', '', flobs)
load(file = paste0('data/', flobs, '.RData'))
get(flobs)
}),
obseval = purrr::map(metobs, function(x) enframe(meteval(x, all = F)) %>% unnest(value))
) %>%
unnest(data) %>%
ungroup %>%
mutate(
metdtd = purrr::pmap(list(metobs, fl), function(metobs, fl){
cat(fl, '\n')
load(file = paste0('data/', fl, '.RData'))
dat <- get(fl)
return(dat)
}),
dtdeval = purrr::map(metdtd, function(x) enframe(meteval(x, all = F)) %>% unnest(value))#,
) %>%
mutate(
minano = purrr::pmap(list(metobs, metdtd), objfun, vls = c('anomPg', 'anomRt')),
minall = purrr::pmap(list(metobs, metdtd), objfun),
fl = gsub('^metdtd_', '', fl)
) %>%
select(-metobs, -metdtd, -nm) %>%
separate(fl, c('nm', 'dy', 'hr', 'td'), sep = '_') %>%
unnest(c('minano', 'minall')) %>%
gather('obj', 'est', minano, minall) %>%
gather('evaltyp', 'eval', obseval, dtdeval) %>%
unnest('eval') %>%
spread(name, value) %>%
group_by(nm, obj, evaltyp)
soln <- mins %>%
filter(est == min(est)) %>%
sample_n(1) %>%
ungroup() %>%
mutate(
evaltyp = factor(evaltyp, levels = c('obseval', 'dtdeval'), labels = c('Observed', 'Detided')),
obj = factor(obj, levels = c('minall', 'minano'), labels = c('All', 'Anomalous'))
) %>%
arrange(nm, obj, evaltyp) %>%
select(nm, dy, hr, td, Opt = obj, Val = est, Input = evaltyp, `Pg Mean` = meanPg, `Pg SD` = sdPg, `Pg Anom` = anomPg, `Rt Mean` = meanRt, `Rt SD` = sdRt, `Rt Anom` = anomRt)
save(soln, file = 'data/soln.RData', compress = 'xz')