-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_inc.py
737 lines (650 loc) · 28.8 KB
/
train_inc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
MaskFormer Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
try:
# ignore ShapelyDeprecationWarning from fvcore
from shapely.errors import ShapelyDeprecationWarning
import warnings
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
pass
import copy
import itertools
import logging
import wandb
import os
import weakref
from collections import OrderedDict
from typing import Any, Dict, List, Set
import torch
from fvcore.nn.precise_bn import get_bn_modules
# Detectron
from detectron2.modeling import build_model
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, get_detection_dataset_dicts, DatasetMapper
from detectron2.engine import (
DefaultTrainer,
default_argument_parser,
default_setup,
launch,
)
from detectron2.evaluation import (
DatasetEvaluators,
DatasetEvaluator,
inference_on_dataset,
print_csv_format,
verify_results,
COCOEvaluator,
)
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger
from detectron2.engine.train_loop import SimpleTrainer, AMPTrainer, TrainerBase
from detectron2.engine import hooks
from detectron2.engine.defaults import create_ddp_model, default_writers
# print("before mask2former")
# MaskFormer
from mask2former import (
InstanceSegEvaluator,
COCOInstanceNewBaselineDatasetMapper,
MaskFormerInstanceDatasetMapper,
MaskFormerSemanticDatasetMapper,
SemanticSegmentorWithTTA,
add_maskformer2_config,
MaskFormerPanopticDatasetMapper,
)
# print("before continual")
from continual import add_continual_config
from continual.data import ContinualDetectron, InstanceContinualDetectron
from continual.evaluation import ContinualSemSegEvaluator, ContinualCOCOPanopticEvaluator
from continual.method_wrapper import build_wrapper
from continual.utils.hooks import BetterPeriodicCheckpointer, BetterEvalHook
from continual.modeling.classifier import WA_Hook
# print('done')
class IncrementalTrainer(TrainerBase):
"""
Extension of the Trainer class adapted to Continual MaskFormer.
"""
def __init__(self, cfg):
"""
Args:
cfg (CfgNode):
"""
super().__init__()
logger = logging.getLogger("detectron2")
if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2
setup_logger()
cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size())
# Assume these objects must be constructed in this order.
model = self.build_model(cfg)
self.model_old = self.build_model(cfg, old=True) if cfg.CONT.TASK > 0 else None
# if self.model_old is not None:
# self.model_old = create_ddp_model(self.model_old, broadcast_buffers=False)
self.optimizer = optimizer = self.build_optimizer(cfg, model)
self.data_loader = data_loader = self.build_train_loader(cfg)
self.model = model = create_ddp_model(model, broadcast_buffers=False)
model_wrapper = build_wrapper(cfg, model, self.model_old)
self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
model_wrapper, data_loader, optimizer
)
self.scheduler = self.build_lr_scheduler(cfg, optimizer)
self.checkpointer = DetectionCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
model,
cfg.OUTPUT_DIR,
trainer=weakref.proxy(self),
)
if self.model_old is not None:
self.checkpointer_old = DetectionCheckpointer(self.model_old, cfg.OUTPUT_DIR)
self.start_iter = 0
self.max_iter = cfg.SOLVER.MAX_ITER
self.cfg = cfg
self._last_eval_results = None
self.register_hooks(self.build_hooks())
def resume_or_load(self, resume=True):
"""
If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by
a `last_checkpoint` file), resume from the file. Resuming means loading all
available states (eg. optimizer and scheduler) and update iteration counter
from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used.
Otherwise, this is considered as an independent training. The method will load model
weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start
from iteration 0.
"""
self.checkpointer.resume_or_load(self.cfg.MODEL.WEIGHTS, resume=resume)
if self.model_old is not None:
# We never want to resume it! Resume = False even when loading from checkpoint.
# This should be strict. If you see that the model does not use some parameters, there's an error.
self.checkpointer_old.resume_or_load(self.cfg.MODEL.WEIGHTS, resume=False)
if resume and self.checkpointer.has_checkpoint():
# The checkpoint stores the training iteration that just finished, thus we start
# at the next iteration
self.start_iter = self.iter + 1
def build_hooks(self):
"""
Taken from DefaultTrainer (detectron2.engine.defaults)
Build a list of default hooks, including timing, evaluation,
checkpointing, lr scheduling, precise BN, writing events.
Returns:
list[HookBase]:
"""
cfg = self.cfg.clone()
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
ret = [
hooks.IterationTimer(),
hooks.LRScheduler(),
hooks.PreciseBN(
# Run at the same freq as (but before) evaluation.
cfg.TEST.EVAL_PERIOD,
self.model,
# Build a new data loader to not affect training
self.build_train_loader(cfg),
cfg.TEST.PRECISE_BN.NUM_ITER,
)
if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model)
else None,
]
# Do PreciseBN before checkpointer, because it updates the model and need to
# be saved by checkpointer.
# This is not always the best: if checkpointing has a different frequency,
# some checkpoints may have more precise statistics than others.
if comm.is_main_process():
ret.append(BetterPeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))
def test_and_save_results():
self._last_eval_results = self.test(self.cfg, self.model)
return self._last_eval_results
# Do evaluation after checkpointer, because then if it fails,
# we can use the saved checkpoint to debug.
ret.append(BetterEvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))
if comm.is_main_process():
# Here the default print/log frequency of each writer is used.
# run writers in the end, so that evaluation metrics are written
ret.append(hooks.PeriodicWriter(self.build_writers(), period=20))
if self.cfg.CONT.WA_STEP > 0 and self.cfg.CONT.TASK > 0:
ret.append(WA_Hook(model=self.model, step=100, distributed=True))
return ret
def build_writers(self):
"""
Build a list of writers to be used using :func:`default_writers()`.
If you'd like a different list of writers, you can overwrite it in
your trainer.
Returns:
list[EventWriter]: a list of :class:`EventWriter` objects.
"""
return default_writers(self.cfg.OUTPUT_DIR, self.max_iter)
def train(self):
"""
Run training.
Returns:
OrderedDict of results, if evaluation is enabled. Otherwise None.
"""
super().train(self.start_iter, self.max_iter)
if len(self.cfg.TEST.EXPECTED_RESULTS) and comm.is_main_process():
assert hasattr(
self, "_last_eval_results"
), "No evaluation results obtained during training!"
verify_results(self.cfg, self._last_eval_results)
self.write_results(self._last_eval_results)
return self._last_eval_results
def run_step(self):
self._trainer.iter = self.iter
self._trainer.run_step()
@classmethod
def build_model(cls, cfg, old=False):
"""
Returns:
torch.nn.Module:
It now calls :func:`detectron2.modeling.build_model`.
Overwrite it if you'd like a different model.
"""
if old:
cfg = cfg.clone()
cfg.defrost()
cfg.CONT.TASK -= 1
model = build_model(cfg)
if not old:
logger = logging.getLogger(__name__)
logger.info("Model:\n{}".format(model))
else:
model.model_old = True # we need to set this as the old model.
model.eval() # and we set it to eval mode.
for par in model.parameters():
par.requires_grad = False
return model
@classmethod
def build_optimizer(cls, cfg, model):
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
defaults = {}
defaults["lr"] = cfg.SOLVER.BASE_LR
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
if "backbone" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
if "sem_seg_head.predictor.mask_embed" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.HEAD_MULTIPLIER
# if "sem_seg_head.predictor.class_embed" in module_name:
# hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.HEAD_MULTIPLIER
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
):
print(module_param_name)
hyperparams["weight_decay"] = 0.0
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
# hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.HEAD_MULTIPLIER
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
return optimizer
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.projects.deeplab.build_lr_scheduler`.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_train_loader(cls, cfg):
# Semantic segmentation dataset mapper
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic": # and "voc" in cfg.DATASETS.TRAIN[0]:
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
wrapper = ContinualDetectron
n_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES - 1
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_instance_lsj":
mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True)
wrapper = InstanceContinualDetectron
n_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance":
mapper = MaskFormerInstanceDatasetMapper(cfg, True)
wrapper = InstanceContinualDetectron
n_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
mapper = MaskFormerPanopticDatasetMapper(cfg, True)
wrapper = ContinualDetectron
n_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES - 1 # we have bkg
else:
raise NotImplementedError("At the moment, we support only segmentation")
dataset = get_detection_dataset_dicts(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
if cfg.MODEL.KEYPOINT_ON
else 0,
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
scenario = wrapper(
dataset,
# Continuum related:
initial_increment=cfg.CONT.BASE_CLS, increment=cfg.CONT.INC_CLS,
nb_classes=n_classes,
save_indexes=os.getenv("DETECTRON2_DATASETS", "datasets") + '/' + cfg.TASK_NAME,
mode=cfg.CONT.MODE, class_order=cfg.CONT.ORDER,
# Mask2Former related:
mapper=mapper, cfg=cfg
)
return scenario[cfg.CONT.TASK]
@classmethod
def build_test_loader(cls, cfg, dataset_name):
"""
Returns:
iterable
"""
if not hasattr(cls, "scenario"):
mapper = DatasetMapper(cfg, False)
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
wrapper = ContinualDetectron
n_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES - 1
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_instance_lsj":
wrapper = InstanceContinualDetectron
n_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance":
wrapper = InstanceContinualDetectron
n_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
# mapper = MaskFormerPanopticDatasetMapper(cfg, True)
wrapper = ContinualDetectron
n_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES - 1 # we have bkg
else:
raise NotImplementedError("At the moment, we support only segmentation")
dataset = get_detection_dataset_dicts(
dataset_name,
filter_empty=False,
proposal_files=None,
)
scenario = wrapper(
dataset,
# Continuum related:
initial_increment=cfg.CONT.BASE_CLS, increment=cfg.CONT.INC_CLS,
nb_classes=n_classes,
save_indexes=os.getenv("DETECTRON2_DATASETS", "datasets") + '/' + cfg.TASK_NAME,
mode=cfg.CONT.MODE, class_order=cfg.CONT.ORDER,
# Mask2Former related:
mapper=mapper, cfg=cfg, masking_value=0,
)
cls.scenario = scenario[cfg.CONT.TASK]
else:
print("Using computed scenario.")
return cls.scenario
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each
builtin dataset. For your own dataset, you can simply create an
evaluator manually in your script and do not have to worry about the
hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
# semantic segmentation
if evaluator_type in ["sem_seg"]: # , "ade20k_panoptic_seg"]:
evaluator_list.append(
ContinualSemSegEvaluator(
cfg,
dataset_name,
distributed=True,
output_dir=output_folder,
)
)
if evaluator_type == "coco":
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "ade20k_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "ade20k_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON:
evaluator_list.append(ContinualCOCOPanopticEvaluator(dataset_name, output_folder))
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def test(cls, cfg, model, evaluators=None):
"""
Evaluate the given model. The given model is expected to already contain
weights to evaluate.
Args:
cfg (CfgNode):
model (nn.Module):
evaluators (list[DatasetEvaluator] or None): if None, will call
:meth:`build_evaluator`. Otherwise, must have the same length as
``cfg.DATASETS.TEST``.
Returns:
dict: a dict of result metrics
"""
logger = logging.getLogger(__name__)
if isinstance(evaluators, DatasetEvaluator):
evaluators = [evaluators]
if evaluators is not None:
assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format(
len(cfg.DATASETS.TEST), len(evaluators)
)
results = OrderedDict()
for idx, dataset_name in enumerate(cfg.DATASETS.TEST):
data_loader = cls.build_test_loader(cfg, dataset_name)
# When evaluators are passed in as arguments,
# implicitly assume that evaluators can be created before data_loader.
if evaluators is not None:
evaluator = evaluators[idx]
else:
try:
evaluator = cls.build_evaluator(cfg, dataset_name)
except NotImplementedError:
logger.warn(
"No evaluator found. Use `DefaultTrainer.test(evaluators=)`, "
"or implement its `build_evaluator` method."
)
results[dataset_name] = {}
continue
results_i = inference_on_dataset(model, data_loader, evaluator)
results[dataset_name] = results_i
if comm.is_main_process():
assert isinstance(
results_i, dict
), "Evaluator must return a dict on the main process. Got {} instead.".format(
results_i
)
logger.info("Evaluation results for {} in csv format:".format(dataset_name))
print_csv_format(results_i)
if len(results) == 1:
results = list(results.values())[0]
return results
@staticmethod
def auto_scale_workers(cfg, num_workers: int):
"""
Taken from DefaultTrainer (detectron2.engine.defaults)
"""
old_world_size = cfg.SOLVER.REFERENCE_WORLD_SIZE
if old_world_size == 0 or old_world_size == num_workers:
return cfg
cfg = cfg.clone()
frozen = cfg.is_frozen()
cfg.defrost()
assert (
cfg.SOLVER.IMS_PER_BATCH % old_world_size == 0
), "Invalid REFERENCE_WORLD_SIZE in config!"
scale = num_workers / old_world_size
bs = cfg.SOLVER.IMS_PER_BATCH = int(round(cfg.SOLVER.IMS_PER_BATCH * scale))
lr = cfg.SOLVER.BASE_LR = cfg.SOLVER.BASE_LR * scale
max_iter = cfg.SOLVER.MAX_ITER = int(round(cfg.SOLVER.MAX_ITER / scale))
warmup_iter = cfg.SOLVER.WARMUP_ITERS = int(round(cfg.SOLVER.WARMUP_ITERS / scale))
cfg.SOLVER.STEPS = tuple(int(round(s / scale)) for s in cfg.SOLVER.STEPS)
cfg.TEST.EVAL_PERIOD = int(round(cfg.TEST.EVAL_PERIOD / scale))
cfg.SOLVER.CHECKPOINT_PERIOD = int(round(cfg.SOLVER.CHECKPOINT_PERIOD / scale))
cfg.SOLVER.REFERENCE_WORLD_SIZE = num_workers # maintain invariant
logger = logging.getLogger(__name__)
logger.info(
f"Auto-scaling the config to batch_size={bs}, learning_rate={lr}, "
f"max_iter={max_iter}, warmup={warmup_iter}."
)
if frozen:
cfg.freeze()
return cfg
@classmethod
def test_with_TTA(cls, cfg, model):
logger = logging.getLogger("detectron2.trainer")
# In the end of training, run an evaluation with TTA.
logger.info("Running inference with test-time augmentation ...")
model = SemanticSegmentorWithTTA(cfg, model)
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
def state_dict(self):
ret = super().state_dict()
ret['trainer'] = self._trainer.state_dict()
return ret
def load_state_dict(self, state_dict):
super().load_state_dict(state_dict)
self._trainer.load_state_dict(state_dict['trainer'])
def write_results(self, results):
name = self.cfg.NAME
path = f"results/{self.cfg.TASK_NAME}.csv"
path_acc = f"results/{self.cfg.TASK_NAME}_acc.csv"
if "sem_seg" in results:
res = results['sem_seg']
cls_iou = []
cls_acc = []
for k in res:
if k.startswith("IoU-"):
cls_iou.append(res[k])
if k.startswith("ACC-"):
cls_acc.append(res[k])
with open(path, "a") as out:
out.write(f"{name},{self.cfg.CONT.TASK},{res['mIoU_base']},{res['mIoU_novel']},{res['mIoU']},")
out.write(",".join([str(i) for i in cls_iou]))
out.write("\n")
with open(path_acc, "a") as out:
out.write(f"{name},{self.cfg.CONT.TASK},{res['mACC']},{res['pACC']},-,")
out.write(",".join([str(i) for i in cls_acc]))
out.write("\n")
if 'panoptic_seg' in results:
res = results['panoptic_seg']
cls_pq = OrderedDict()
cls_rq = OrderedDict()
cls_sq = OrderedDict()
for k in res:
if k.startswith("PQ_c"):
cls_pq[int(k[4:])] = res[k]
if k.startswith("RQ_c"):
cls_rq[int(k[4:])] = res[k]
if k.startswith("SQ_c"):
cls_sq[int(k[4:])] = res[k]
with open(path, "a") as out:
out.write(f"{name},{self.cfg.CONT.TASK},{res['PQ']},{res['RQ']},{res['SQ']},")
out.write(",".join([str(i) for i in cls_pq.values()]))
out.write(f",")
out.write(",".join([str(i) for i in cls_rq.values()]))
out.write(f",")
out.write(",".join([str(i) for i in cls_sq.values()]))
out.write("\n")
if 'segm' in results:
res = results['segm']
path = f"results/{self.cfg.TASK_NAME}.csv"
class_ap = []
for k in res:
if k.startswith("AP-"):
class_ap.append(res[k])
with open(path, "a") as out: # "AP", "AP50", "AP75", "APs", "APm", "APl"
out.write(f"{name},{self.cfg.CONT.TASK},{res['AP']},{res['AP50']},{res['AP75']},")
out.write(",".join([str(i) for i in class_ap]))
out.write("\n")
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.NAME = "Exp"
# for poly lr schedule
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
add_continual_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
if cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON:
suffix = "-pan"
elif cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
suffix = "-ins"
else:
suffix = ""
if cfg.CONT.MODE == 'overlap':
cfg.TASK_NAME = f"{cfg.DATASETS.TRAIN[0][:3]}{suffix}_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}-ov"
elif cfg.CONT.MODE == "disjoint":
cfg.TASK_NAME = f"{cfg.DATASETS.TRAIN[0][:3]}{suffix}_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}-dis"
else:
cfg.TASK_NAME = f"{cfg.DATASETS.TRAIN[0][:3]}{suffix}_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}-seq"
if cfg.CONT.ORDER_NAME is not None:
cfg.TASK_NAME += "-" + cfg.CONT.ORDER_NAME
cfg.OUTPUT_ROOT = cfg.OUTPUT_DIR
cfg.OUTPUT_DIR = cfg.OUTPUT_DIR + "/" + cfg.TASK_NAME + "/" + cfg.NAME + "/step" + str(cfg.CONT.TASK)
cfg.freeze()
default_setup(cfg, args)
# Setup logger for "mask_former" module
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="mask2former")
if comm.get_rank() == 0 and cfg.WANDB:
wandb.init(project="ContM2F", entity="fcdl94", name=cfg.NAME + "_step" + str(cfg.CONT.TASK),
config=cfg, sync_tensorboard=True, group=cfg.TASK_NAME, settings=wandb.Settings(start_method="fork"))
return cfg
def main(args):
cfg = setup(args)
if hasattr(cfg, 'CONT') and cfg.CONT.TASK > 0:
cfg.defrost()
if cfg.CONT.WEIGHTS is None: # load from last step
cfg.MODEL.WEIGHTS = cfg.OUTPUT_ROOT + "/" + cfg.TASK_NAME + "/" + cfg.NAME + f"/step{cfg.CONT.TASK - 1}/model_final.pth"
else: # load from cfg
cfg.MODEL.WEIGHTS = cfg.CONT.WEIGHTS
cfg.freeze()
if args.eval_only:
model = IncrementalTrainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = IncrementalTrainer.test(cfg, model)
# if cfg.TEST.AUG.ENABLED:
# res.update(IncrementalTrainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = IncrementalTrainer(cfg)
trainer.resume_or_load(resume=args.resume)
ret = trainer.train()
if comm.get_rank() == 0:
wandb.finish()
return ret
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)