-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathargparser.py
200 lines (175 loc) · 10.6 KB
/
argparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import tasks
def modify_command_options(opts):
if opts.dataset == 'voc':
opts.num_classes = 21
if opts.dataset == 'ade':
opts.num_classes = 150
if not opts.visualize:
opts.sample_num = 0
if opts.method is not None:
if opts.method == 'FT':
pass
if opts.method == 'LWF':
opts.loss_kd = 100
if opts.method == 'LWF-MC':
opts.icarl = True
opts.icarl_importance = 10
if opts.method == 'ILT':
opts.loss_kd = 100
opts.loss_de = 100
if opts.method == 'EWC':
opts.regularizer = "ewc"
opts.reg_importance = 500
if opts.method == 'RW':
opts.regularizer = "rw"
opts.reg_importance = 100
if opts.method == 'PI':
opts.regularizer = "pi"
opts.reg_importance = 500
if opts.method == 'MiB':
opts.loss_kd = 10
opts.unce = True
opts.unkd = True
opts.init_balanced = True
opts.no_overlap = not opts.overlap
opts.no_cross_val = not opts.cross_val
return opts
def get_argparser():
parser = argparse.ArgumentParser()
# Performance Options
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--random_seed", type=int, default=42,
help="random seed (default: 42)")
parser.add_argument("--num_workers", type=int, default=1,
help='number of workers (default: 1)')
# Datset Options
parser.add_argument("--data_root", type=str, default='data',
help="path to Dataset")
parser.add_argument("--dataset", type=str, default='voc',
choices=['voc', 'ade'], help='Name of dataset')
parser.add_argument("--num_classes", type=int, default=None,
help="num classes (default: None)")
# Method Options
# BE CAREFUL USING THIS, THEY WILL OVERRIDE ALL THE OTHER PARAMETERS.
parser.add_argument("--method", type=str, default=None,
choices=['FT', 'LWF', 'LWF-MC', 'ILT', 'EWC', 'RW', 'PI', 'MiB'],
help="The method you want to use. BE CAREFUL USING THIS, IT MAY OVERRIDE OTHER PARAMETERS.")
# Train Options
parser.add_argument("--epochs", type=int, default=30,
help="epoch number (default: 30)")
parser.add_argument("--fix_bn", action='store_true', default=False,
help='fix batch normalization during training (default: False)')
parser.add_argument("--batch_size", type=int, default=4,
help='batch size (default: 4)')
parser.add_argument("--crop_size", type=int, default=512,
help="crop size (default: 513)")
parser.add_argument("--lr", type=float, default=0.007,
help="learning rate (default: 0.007)")
parser.add_argument("--momentum", type=float, default=0.9,
help='momentum for SGD (default: 0.9)')
parser.add_argument("--weight_decay", type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument("--lr_policy", type=str, default='poly',
choices=['poly', 'step'], help="lr schedule policy (default: poly)")
parser.add_argument("--lr_decay_step", type=int, default=5000,
help="decay step for stepLR (default: 5000)")
parser.add_argument("--lr_decay_factor", type=float, default=0.1,
help="decay factor for stepLR (default: 0.1)")
parser.add_argument("--lr_power", type=float, default=0.9,
help="power for polyLR (default: 0.9)")
parser.add_argument("--bce", default=False, action='store_true',
help="Whether to use BCE or not (default: no)")
# Validation Options
parser.add_argument("--val_on_trainset", action='store_true', default=False,
help="enable validation on train set (default: False)")
parser.add_argument("--cross_val", action='store_true', default=False,
help="If validate on training or on validation (default: Train)")
parser.add_argument("--crop_val", action='store_false', default=True,
help='do crop for validation (default: True)')
# Logging Options
parser.add_argument("--logdir", type=str, default='./logs',
help="path to Log directory (default: ./logs)")
parser.add_argument("--name", type=str, default='Experiment',
help="name of the experiment - to append to log directory (default: Experiment)")
parser.add_argument("--sample_num", type=int, default=0,
help='number of samples for visualization (default: 0)')
parser.add_argument("--debug", action='store_true', default=False,
help="verbose option")
parser.add_argument("--visualize", action='store_false', default=True,
help="visualization on tensorboard (def: Yes)")
parser.add_argument("--print_interval", type=int, default=10,
help="print interval of loss (default: 10)")
parser.add_argument("--val_interval", type=int, default=1,
help="epoch interval for eval (default: 1)")
parser.add_argument("--ckpt_interval", type=int, default=1,
help="epoch interval for saving model (default: 1)")
# Model Options
parser.add_argument("--backbone", type=str, default='resnet101',
choices=['resnet50', 'resnet101'], help='backbone for the body (def: resnet50)')
parser.add_argument("--output_stride", type=int, default=16,
choices=[8, 16], help='stride for the backbone (def: 16)')
parser.add_argument("--no_pretrained", action='store_true', default=False,
help='Wheather to use pretrained or not (def: True)')
parser.add_argument("--norm_act", type=str, default="iabn_sync",
choices=['iabn_sync', 'iabn', 'abn', 'std'], help='Which BN to use (def: abn_sync')
parser.add_argument("--fusion-mode", metavar="NAME", type=str, choices=["mean", "voting", "max"], default="mean",
help="How to fuse the outputs. Options: 'mean', 'voting', 'max'")
parser.add_argument("--pooling", type=int, default=32,
help='pooling in ASPP for the validation phase (def: 32)')
# Test and Checkpoint options
parser.add_argument("--test", action='store_true', default=False,
help="Whether to train or test only (def: train and test)")
parser.add_argument("--ckpt", default=None, type=str,
help="path to trained model. Leave it None if you want to retrain your model")
# Parameters for Knowledge Distillation of ILTSS (https://arxiv.org/abs/1907.13372)
parser.add_argument("--freeze", action='store_true', default=False,
help="Use this to freeze the feature extractor in incremental steps")
parser.add_argument("--loss_de", type=float, default=0., # Distillation on Encoder
help="Set this hyperparameter to a value greater than "
"0 to enable distillation on Encoder (L2)")
parser.add_argument("--loss_kd", type=float, default=0., # Distillation on Output
help="Set this hyperparameter to a value greater than "
"0 to enable Knowlesge Distillation (Soft-CrossEntropy)")
# Parameters for EWC, RW, and SI (from Riemannian Walks https://arxiv.org/abs/1801.10112)
parser.add_argument("--regularizer", default=None, type=str, choices=['ewc', 'rw', 'pi'],
help="regularizer you want to use. Default is None")
parser.add_argument("--reg_importance", type=float, default=1.,
help="set this par to a value greater than 0 to enable regularization")
parser.add_argument("--reg_alpha", type=float, default=0.9,
help="Hyperparameter for RW and EWC that controls the update of Fisher Matrix")
parser.add_argument("--reg_no_normalize", action='store_true', default=False,
help="If EWC, RW, PI must be normalized or not")
parser.add_argument("--reg_iterations", type=int, default=10,
help="If RW, the number of iterations after each the update of the score is done")
# Arguments for ICaRL (from https://arxiv.org/abs/1611.07725)
parser.add_argument("--icarl", default=False, action='store_true',
help="If enable ICaRL or not (def is not)")
parser.add_argument("--icarl_importance", type=float, default=1.,
help="the regularization importance in ICaRL (def is 1.)")
parser.add_argument("--icarl_disjoint", action='store_true', default=False,
help="Which version of icarl is to use (def: combined)")
parser.add_argument("--icarl_bkg", action='store_true', default=False,
help="If use background from GT (def: No)")
# METHODS
parser.add_argument("--init_balanced", default=False, action='store_true',
help="Enable Background-based initialization for new classes")
parser.add_argument("--unkd", default=False, action='store_true',
help="Enable Unbiased Knowledge Distillation instead of Knowledge Distillation")
parser.add_argument("--alpha", default=1., type=float,
help="The parameter to hard-ify the soft-labels. Def is 1.")
parser.add_argument("--unce", default=False, action='store_true',
help="Enable Unbiased Cross Entropy instead of CrossEntropy")
# Incremental parameters
parser.add_argument("--task", type=str, default="19-1", choices=tasks.get_task_list(),
help="Task to be executed (default: 19-1)")
parser.add_argument("--step", type=int, default=0,
help="The incremental step in execution (default: 0)")
parser.add_argument("--no_mask", action='store_true', default=False,
help="Use this to not mask the old classes in new training set")
parser.add_argument("--overlap", action='store_true', default=False,
help="Use this to not use the new classes in the old training set")
parser.add_argument("--step_ckpt", default=None, type=str,
help="path to trained model at previous step. Leave it None if you want to use def path")
parser.add_argument('--opt_level', type=str, choices=['O0', 'O1', 'O2', 'O3'], default='O0')
return parser