-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
338 lines (264 loc) · 15.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
from timeit import default_timer as timer
import hydra
import torch
from pytorch_lightning.lite import LightningLite
from pytorch_lightning.utilities import rank_zero_only
from omegaconf import OmegaConf, DictConfig
from hydra.utils import instantiate
from torch.utils.data import DataLoader
from torchvision.utils import save_image, make_grid
from models.autoencoder.vqgan import VQEncoderInterface, VQDecoderInterface
from utils.helpers import print_status, count_model_parameters, ensure_path_join, denormalize_to_zero_to_one, \
normalize_to_neg_one_to_one
import torchmetrics as tm
import sys
sys.path.insert(0, 'IDiff-Face/')
os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
class DiffusionTrainerLite(LightningLite):
@staticmethod
@rank_zero_only
def save_checkpoint(ema_model, diffusion_model, optimizer, global_step, epoch, steps_of_checkpoints=None, lr_scheduler=None):
optimization_ckpt = {
'global_step': global_step,
'epoch': epoch,
'optimizer': optimizer.state_dict(),
}
if lr_scheduler:
optimization_ckpt['lr_scheduler'] = lr_scheduler.state_dict()
# save final model additionally as its own (smaller) file
torch.save(ema_model.averaged_model.state_dict(), ensure_path_join(os.getcwd(), 'checkpoints', f'ema_averaged_model.ckpt'))
torch.save(diffusion_model.state_dict(), ensure_path_join(os.getcwd(), 'checkpoints', f'model.ckpt'))
if steps_of_checkpoints is not None and global_step in steps_of_checkpoints:
torch.save(ema_model.averaged_model.state_dict(), ensure_path_join(os.getcwd(), 'checkpoints', f'ema_averaged_model_{global_step}.ckpt'))
torch.save(optimization_ckpt, ensure_path_join(os.getcwd(), 'checkpoints', f'optimization.ckpt'))
print(f"Successfully saved checkpoint (global_step: {global_step})")
@staticmethod
def restore_checkpoint(model, optimizer, path, lr_scheduler=None):
model_ckpt = torch.load(os.path.join(path, 'checkpoints', 'model.ckpt'), map_location="cpu")
optimization_ckpt = torch.load(os.path.join(path, 'checkpoints', 'optimization.ckpt'), map_location="cpu")
global_step = optimization_ckpt['global_step']
epoch = optimization_ckpt['epoch']
model.load_state_dict(model_ckpt)
optimizer.load_state_dict(optimization_ckpt['optimizer'])
if 'lr_scheduler' in optimization_ckpt:
lr_scheduler.load_state_dict(optimization_ckpt['lr_scheduler'])
print(f"Successfully restored checkpoint (global_step: {global_step}) from: {path}")
return global_step, epoch
@rank_zero_only
def create_and_save_sample_grid(self, model, size, x=None, context=None, latent_decoder=None, save_path=''):
# constants
N_PER_ROW = 8
PAD_VALUE = 1.0
PADDING = 4
N_PER_BLOCK = 24
model.eval()
with torch.no_grad():
# create unconditional samples (or conditional samples with empty context)
samples_uncond = model.sample(N_PER_BLOCK, size).cpu()
if latent_decoder is not None:
samples_uncond = latent_decoder(samples_uncond)
samples_uncond = denormalize_to_zero_to_one(samples_uncond)
# grid block with only the unconditional samples
grid = make_grid(samples_uncond, nrow=N_PER_ROW, pad_value=PAD_VALUE, padding=PADDING)
divider = torch.full((grid.shape[0], PADDING, grid.shape[2]), PAD_VALUE).cpu()
if context is not None:
# add create synthetic conditional samples block as well and add them to the grid
syn_context = torch.nn.functional.normalize(torch.randn_like(context)).cuda()
samples_syn_cond = model.sample(N_PER_BLOCK, size, context=syn_context[:N_PER_BLOCK]).cpu()
if latent_decoder is not None:
samples_syn_cond = latent_decoder(samples_syn_cond)
samples_syn_cond = denormalize_to_zero_to_one(samples_syn_cond)
block = make_grid(samples_syn_cond, nrow=N_PER_ROW, pad_value=PAD_VALUE, padding=PADDING)
grid = torch.cat([grid, divider, block], dim=1)
# and fixed synthetic context but non-fixed noise conditional generation
context_fixed = syn_context[0].repeat(N_PER_ROW, 1).cuda()
samples_fixed_syn_context = model.sample(N_PER_ROW, size, context=context_fixed).cpu()
if latent_decoder is not None:
samples_fixed_syn_context = latent_decoder(samples_fixed_syn_context)
samples_fixed_context = denormalize_to_zero_to_one(samples_fixed_syn_context)
block = make_grid(samples_fixed_context, nrow=N_PER_ROW, pad_value=PAD_VALUE, padding=PADDING)
grid = torch.cat([grid, divider, block], dim=1)
# add create authentic conditional samples block as well and add them to the grid
samples_cond = model.sample(N_PER_BLOCK, size, context=context[:N_PER_BLOCK]).cpu()
if latent_decoder is not None:
samples_cond = latent_decoder(samples_cond)
samples_cond = denormalize_to_zero_to_one(samples_cond)
block = make_grid(samples_cond, nrow=N_PER_ROW, pad_value=PAD_VALUE, padding=PADDING)
grid = torch.cat([grid, divider, block], dim=1)
# and fixed context but non-fixed noise conditional generation
context_fixed = context[0].repeat(N_PER_ROW, 1).cuda()
samples_fixed_context = model.sample(N_PER_ROW, size, context=context_fixed).cpu()
if latent_decoder is not None:
samples_fixed_context = latent_decoder(samples_fixed_context)
samples_fixed_context = denormalize_to_zero_to_one(samples_fixed_context)
block = make_grid(samples_fixed_context, nrow=N_PER_ROW, pad_value=PAD_VALUE, padding=PADDING)
grid = torch.cat([grid, divider, block], dim=1)
# add additional block with real samples
if x is not None:
grid = torch.cat(
[grid, divider, make_grid(x[:N_PER_BLOCK].cpu(), nrow=N_PER_ROW, pad_value=PAD_VALUE, padding=PADDING)], dim=1)
save_image(grid, save_path)
model.train()
def run(self, cfg):
# seed for reproducibility
self.seed_everything(cfg.constants.seed)
# create diffusion model from config
diffusion_model = instantiate(cfg.diffusion)
# count number of parameters
trainable_params, _, total_params = count_model_parameters(diffusion_model)
print(f"#Params Diffusion Model: {trainable_params} (Total: {total_params})")
# create optimizer from config
partial_optimizer = instantiate(cfg.training.optimizer)
optimizer = partial_optimizer(params=diffusion_model.parameters())
if cfg.training.lr_scheduler is not None:
partial_lr_scheduler = instantiate(cfg.training.lr_scheduler)
lr_scheduler = partial_lr_scheduler(optimizer=optimizer)
else:
lr_scheduler = None
# registrate model and optimizer in lite
diffusion_model, optimizer = self.setup(diffusion_model, optimizer)
# (optional) load pre-existing weights
if cfg.training.checkpoint.restore:
global_step, epoch = self.restore_checkpoint(diffusion_model.module, optimizer, cfg.training.checkpoint.path, lr_scheduler)
else:
global_step, epoch = 0, 0
# create exponential moving average (ema) model
partial_ema = instantiate(cfg.training.ema)
ema_model = partial_ema(model=diffusion_model.module)
ema_model.optimization_step += global_step
if cfg.training.checkpoint.restore:
ema_model_ckpt = torch.load(os.path.join(cfg.training.checkpoint.path, 'checkpoints', 'ema_averaged_model.ckpt'), map_location="cpu")
ema_model.averaged_model.load_state_dict(ema_model_ckpt)
if cfg.latent_diffusion:
# create VQGAN encoder and decoder for training in its latent space
latent_encoder = VQEncoderInterface(
first_stage_config_path=os.path.join(cfg.paths.root, "models", "autoencoder", "first_stage_config.yaml"),
encoder_state_dict_path=os.path.join(cfg.paths.root, "models", "autoencoder", "first_stage_encoder_state_dict.pt")
)
latent_decoder = VQDecoderInterface(
first_stage_config_path=os.path.join(cfg.paths.root, "models", "autoencoder", "first_stage_config.yaml"),
decoder_state_dict_path=os.path.join(cfg.paths.root, "models", "autoencoder", "first_stage_decoder_state_dict.pt")
)
# only push encoder to GPU to save memory (decoder is only used for sampling and not during training)
self.setup(latent_encoder)
# set both into evaluation mode
latent_encoder.eval()
latent_decoder.eval()
# display their number of parameters
trainable_params, _, total_params = count_model_parameters(latent_encoder)
print(f"#Params Latent Encoder Model: {trainable_params} (Total: {total_params})")
trainable_params, _, total_params = count_model_parameters(latent_decoder)
print(f"#Params Latent Decoder Model: {trainable_params} (Total: {total_params})")
else:
latent_encoder, latent_decoder = None, None
# create dataset and dataloader from config
dataset = instantiate(cfg.dataset)
dataloader = DataLoader(dataset,
batch_size=cfg.training.batch_size, shuffle=True,
num_workers=cfg.training.num_workers, pin_memory=cfg.training.pin_memory)
# registrate dataloader in lite
dataloader = self.setup_dataloaders(dataloader)
# keep one batch fixed for visualisations
x_visualisation = None
context_visualisation = None
# training loop
metrics = {}
loss_metric = tm.MeanMetric().cuda()
while True:
for x, context in dataloader:
t_start = timer()
if x_visualisation is None:
x_visualisation = x.detach().clone()
context_visualisation = context.detach().clone() if cfg.model.is_context_conditional else None
if cfg.latent_diffusion:
with torch.no_grad():
sample_size = latent_encoder(x_visualisation[:1]).shape[-3:]
else:
sample_size = x_visualisation.shape[-3:]
# normalize from [0, 1] to [-1, 1]
x = normalize_to_neg_one_to_one(x)
# if the model is not conditioned on context
if context is None or not cfg.model.is_context_conditional:
context = None
dropout_mask = None
# else randomly drop some contexts in case of context-dropout
elif cfg.training.context_dropout > 0:
dropout_mask = torch.rand(len(x)) < cfg.training.context_dropout
# in case of learnable empty context embeddings, make sure that at least one context is dropped
# out to avoid gradient problems for unused parameters with the learnable embeddings
if cfg.model.learn_empty_context and dropout_mask.sum() == 0:
dropout_mask[0] = True
# or disable the contextual dropout
else:
dropout_mask = None
# apply random context swaps in case of context permutation
if context is not None and cfg.model.is_context_conditional and cfg.training.context_permutation > 0:
n_permuted = int(cfg.training.batch_size * cfg.training.context_permutation)
permutation = torch.randperm(n_permuted)
context[:n_permuted] = context[permutation]
# evaluation
if global_step % cfg.training.steps_between_eval == 0:
self.save_checkpoint(
ema_model,
diffusion_model,
optimizer,
global_step,
epoch,
cfg.training.steps_of_checkpoints,
lr_scheduler
)
# sampling
if global_step % cfg.training.steps_between_sampling == 0:
self.create_and_save_sample_grid(ema_model.averaged_model, size=sample_size,
x=x_visualisation, context=context_visualisation, latent_decoder=latent_decoder,
save_path=ensure_path_join(
os.getcwd(), 'samples', f"sample_{global_step:06d}.png"))
# training step
diffusion_model.train()
# map to latent_space
if cfg.latent_diffusion:
with torch.no_grad():
x = latent_encoder(x)
optimizer.zero_grad()
loss = diffusion_model(x, context=context, dropout_mask=dropout_mask)
self.backward(loss)
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
# update ema model
ema_model.step(diffusion_model.module)
# aggregate losses from parallel devices
loss_metric.update(loss)
# monitoring and logging
t_elapsed = (timer() - t_start)
log_file_path = os.path.join(os.getcwd(), "main.log")
print_status(epoch=epoch, global_step=global_step, loss=loss_metric.compute().item(),
metrics=metrics, time=t_elapsed, lr=lr_scheduler.get_last_lr()[0] if lr_scheduler is not None else None,
log_file_path=log_file_path if global_step % cfg.training.steps_between_logging == 0 else None)
# reset losses from parallel devices
loss_metric.reset()
global_step += 1
if global_step >= cfg.training.steps:
self.save_checkpoint(
ema_model,
diffusion_model,
optimizer,
global_step,
epoch,
cfg.training.steps_of_checkpoints,
lr_scheduler
)
self.create_and_save_sample_grid(ema_model.averaged_model, size=sample_size,
x=x_visualisation, context=context_visualisation, latent_decoder=latent_decoder,
save_path=ensure_path_join(
os.getcwd(), 'samples', f"sample_{global_step:06d}.png"))
return
epoch += 1
@hydra.main(config_path='configs', config_name='train_config', version_base=None)
def train(cfg: DictConfig):
print(OmegaConf.to_yaml(cfg))
trainer = DiffusionTrainerLite(devices='auto', accelerator='gpu', precision=cfg.training.precision)
trainer.run(cfg)
if __name__ == "__main__":
train()